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Abstract

INTRODUCTION:While current blood-basedbiomarkers forAlzheimer’s disease (AD)

are effective for determining amyloid beta (Aβ) pathology positivity/negativity, they

are insufficient for quantifying Aβ plaque deposition.
METHODS:Weprofiled 325 plasma proteins in aHongKongChinese cohort using the

Nucleic Acid Linked Immuno‑Sandwich Assay (NULISAseq) platform.We analyzed the

dysregulation trajectories of the blood proteome along Aβ pathology progression and
usedmachine learning to develop a biomarker panel to quantify Aβ pathology.
RESULTS: We identified 43 blood proteins correlated with Aβ plaque accumulation

and selected 8 proteins to construct a model. This model was strongly correlated with

amyloid positron emission tomography Centiloid values (r = 0.89), enabling quantifi-

cation of Aβ deposition and classification of early-stage pathology (area under the

curve= 0.93).

DISCUSSION: This study provides a systematic profile of dynamic protein alterations

during Aβ pathology progression. Moreover, we developed a biomarker assay that

accurately quantifiesAβpathology, offering apotential tool to facilitate early screening
andmonitoring of amyloid pathology.

KEYWORDS

Alzheimer’s disease, amyloid pathology, amyloid beta quantification, blood biomarkers, disease
staging, early detection, machine learning

Highlights

∙ NucleicAcid Linked Immuno‑SandwichAssay (NULISAseq)was applied toprofile the
blood proteome during the development of brain amyloid pathology.

∙ Different immune and neuronal biological processes exhibit distinct and stage-

specific dysregulation patterns during amyloid accumulation.

∙ A machine learning–based, eight-protein blood biomarker panel was developed to

accurately predict the quantitative extent of brain amyloid pathology.

∙ The eight-protein biomarker assay accurately detects early amyloid accumulation

and outperforms prediction based on phosphorylated tau 217 alone.

1 INTRODUCTION

Alzheimer’s disease (AD), the leading cause of dementia,1 is character-

izedby twokeyneuropathological hallmarks: amyloidbeta (Aβ) plaques
and tau neurofibrillary tangles.2 Cognitive assessments and biological

examinations—particularly evaluation of Aβ pathology—are essential

for clinical diagnosis of AD. Amyloid positron emission tomography

(PET) imaging is the gold standard for assessing brain Aβ pathology.

Its results are usually interpreted as either Aβ positive or Aβ nega-

tive based on visual reads, guiding diagnosis and treatment eligibility.

However, this binary classification can be challenging if Aβ levels are
close to the diagnostic threshold, potentially risking misclassification

and delayed intervention.3

ContinuousquantitativemeasuresbasedonAβPET imaging, suchas

the Centiloid (CL) scale, offer more objective assessments of progres-

sive Aβ accumulation. The CL scale standardizes Aβ pathology: values
< 10 indicate no pathology, while values > 30 indicate established

pathology.4 This continuous approach enables the precise staging ofAβ
pathology, offering important clinical implications. It objectively cap-

tures early Aβ accumulation in the “intermediate range” (i.e., CL values

between cutoffs), indicating evolving pathology and enhancing early

diagnosis.4,5 It also helps monitor disease progression and therapeutic

response, which are crucial for timely and effective intervention.6

Although reliable, Aβ PET imaging is costly and requires specialized

infrastructure, limiting accessibility. Therefore, blood-based biomark-

ers have emerged as less invasive, more accessible alternatives.7
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RESEARCH INCONTEXT

1. Systematic review:We conducted a comprehensive literature search on PubMed for all articles published from database inception to

Sep 3, 2025, without language restrictions using the following keywords: “Alzheimer’s disease,” “amyloid-β positron emission tomog-

raphy,” “standardized uptake value ratio” “Centiloid,” “blood biomarker,” “amyloid,” “tau,” and “phosphorylated tau.” Previous studies

demonstrate the feasibility of blood-based protein biomarkers, particularly phosphorylated tau (p-tau) proteins, for the binary clas-

sification of amyloid beta (Aβ) pathology as positive/negative. However, growing evidence indicates that quantitative measures of Aβ
pathology are valuable for precise disease staging and monitoring pathological changes. Current blood biomarkers are inadequate

for this quantitative assessment, limiting their clinical utility for early detection, tracking pathological progression, and guiding timely

therapeutic intervention. Therefore, there is an urgent need for blood-based biomarkers that can indicate the quantitative extent of

Aβ pathology, enablingmore accurate, accessible, and efficient assessment of the amount of brain Aβ plaques.
2. Interpretation: This study provides the first systematic profile of blood proteomic alterations along Aβ accumulation. We identified

novel blood biomarkers associated with Aβ pathology and delineated their complex, dynamic trajectories. Through co-regulation and

network analysis, we revealed that these biomarkers represent diverse biological processes, including synaptic transmission, immune

response, and extracellular matrix organization, and exhibit distinct dysregulation patterns during Aβ pathology progression. Using
machine learning, we developed a panel of eight blood protein biomarkers that capture the heterogeneous dysregulation trajectories.

We further constructed a prediction model based on this panel that accurately predicts quantitative Aβ pathology and sensitively

detects early Aβ accumulation. This model outperforms p-tau217 and p-tau231 for assessing nuanced Aβ level changes. Thus, this
model is a powerful, accessible tool that advances early diagnosis, patient stratification, andprecisionmedicine forAlzheimer’s disease

(AD).

3. Future directions: Our study underscores the value of profiling the blood proteome during continuous Aβ accumulation to discover

biomarkers that reflect progressive pathological changes, thereby enhancing the precision of blood-based staging. These findings sup-

port the development of high-performance blood assays for quantifying Aβ pathology and monitoring its changes over time, which

would be invaluable for clinical trials and practice, especially for Aβ-targeting therapies. Furthermore, these novel biomarkers, which

are involved in multiple biological pathways with distinct dynamics, enable a more refined and comprehensive evaluation of the AD

pathological continuum, potentially facilitating personalized treatment strategies. Future researchwill focus on validating the dynam-

ics of these biomarkers and integrating this holistic assessment into clinical workflows, which could transform the risk prediction,

diagnosis, andmanagement of AD, paving the way for innovative therapeutic approaches.

Key AD blood biomarkers include Aβ42/40 ratio, phosphorylated tau

species (p-tau; e.g., p-tau217, p-tau231, and p-tau181), andNfL (neuro-

filament light chain)—collectively termed the ATN biomarkers.8 These

biomarkers, particularly blood p-tau217, show high concordance with

Aβ PET imaging in binary classification.9 Notably, blood p-tau217 is

particularly correlated with the later stage of Aβ accumulation, while

blood p-tau231 is more strongly correlated with the early stage,10,11

indicating that different biomarkers may better reflect distinct Aβ
pathology stages. Additionally, proteins related to synapse function,

immunity, and inflammation are also associated with Aβ pathology,12

and combining multiple biomarkers to leverage their complemen-

tary stage-dependent correlationsmay enhance diagnostic accuracy.13

However, further study is required to determine whether blood-based

biomarkers or combinations thereof accurately reflect Aβ pathology as
well as the CL scale.14,15

Novel platforms enable high-throughput quantification of multi-

ple biomarkers. NULISAseq (Nucleic Acid Linked Immuno-Sandwich

Assay) is a highly sensitive immunoassay that couples antibody-based

detectionwithnext-generation sequencing,16 allowingaccurate, simul-

taneous measurement of multiple p-tau species and other proteins,

making it ideal for AD research.17–19 Analyzing such complex pro-

teomic datasets requires advanced computational methods. Machine

learning, particularly least absolute shrinkage and selection oper-

ator (LASSO) models, is increasingly applied in biomarker panel

development.20 These models can select features with the highest

predictive value and thereby optimize the biomarker panel.

In this study, we used NULISAseq to reveal dynamic plasma pro-

teomic changes associated with brain Aβ accumulation and applied

machine learning to develop a predictive biomarker panel. Specifi-

cally, we assessed 325 plasma proteins using the NULISA CNSDisease

Panel 120 and Inflammation Panel 250 assays in a Hong Kong Chi-

nese cohort that underwent Aβ PET imaging and CL quantification.

We identified 43 proteins exhibiting linear or non-linear correlations

with brain Aβ deposition. Functional enrichment analysis revealed

that these proteins are involved in synaptic transmission, extracellular

matrix regulation, cytokine signaling, and leukocytemigration.We also

applied LASSO to identify key proteins for predicting Aβ accumulation,

which highlighted eight proteins: p-tau217, p-tau231, and six other

AD-associated proteins (i.e., neurotrophin 3 [NTF3], placental growth

factor [PGF], secreted protein acidic and rich in cysteine-related mod-

ular calcium binding 1 [SMOC1], kallikrein-related peptidase 6 [KLK6],

cluster of differentiation 4 [CD4], and periostin [POSTN]). Based on
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these eight proteins, we constructed a machine learning model for

predicting continuous CL values, termed the“CL predictor,” which

demonstrated high accuracy (r = 0.89). Importantly, the CL predic-

tor outperformed p-tau217 for predicting both continuous CL values

and classifying early Aβ pathology (area under the receiver operating
characteristic curve [AUC] = 0.91). Taken together, we comprehen-

sively profiled the dynamics of the plasma proteome along brain

Aβ accumulation and developed a highly accurate blood biomarker

assay for the early detection, monitoring, and precise staging of Aβ
pathology.

2 METHODS

2.1 Participant recruitment

We recruited participants from the Hong Kong Chinese population.

The cohort comprised 179 Hong Kong Chinese individuals aged ≥ 54

years, including 71 individuals with AD, 12 individuals with non-AD

dementia, 62 individuals with mild cognitive impairment (MCI), and 34

cognitively normal control (NC) individuals, who visited the Specialist

Outpatient Department of the Prince of Wales Hospital of the Chi-

nese University of Hong Kong (CUHK-PWH), Division of Neurology

of CUHK-PWH, the Department of Medicine at Queen Mary Hospi-

tal, the Department of Medicine and Geriatrics at Tuen Mun Hospital,

or the Department of Medicine and Geriatrics at United Christian

Hospital. Participants underwent clinical examination, the Montreal

Cognitive Assessment (MoCA),21 blood collection for the measure-

ment of biomarkers, Aβ PET using [11C]-Pittsburgh compound B (PiB),

and neuroimaging by magnetic resonance imaging (MRI).22 The clini-

cal diagnosis of MCI/dementia was based on a comprehensive clinical

evaluation conducted by medical practitioners. Each participant’s age,

sex, and years of educationwere recorded. Theparticipants also under-

went T1-weighted MRI to quantify brain volumes. All participants or

the legal guardians of participants provided written informed consent

for study participation and sample collection. This study was approved

by the Joint Chinese University of Hong Kong–New Territories East

Cluster Clinical Research Ethics Committee at CUHK-PWH, the Insti-

tutional Review Board, Hospital Authority (CREC ref. no. 2015.461,

KC/KE-22-0107 /ER-2, UW 22-027, CIRB-2023-065-1), and Human

and Artefacts Research Ethics Committee (HAREC) at the Hong Kong

University of Science and Technology (HREP-2023-0179), and the

Human Participants Research Panel of The Hong Kong University of

Science and Technology (CRP#180).

2.2 Imaging acquisition and quantification

T1-weighted structural images were acquired using 3-T MRI scanners.

Aβ PET imaging was performed using 11C-PiB PET (Methods S1, S2;

Figures S1–S3; Tables S1, S2 in supporting information). All partici-

pants were assigned to the AβLow, AβInt, or AβHigh group according to

their amyloid status on PET irrespective of their cognitive status. Low

Aβ pathology on Aβ PET was defined as < 10 CL units, intermediate

pathology as 10 to 30 CL units, and high pathology as> 30 CL units.

2.3 Plasma protein measurement

We analyzed plasma samples using a NULISAseq CNS Disease Panel

120 assay and a NULISAseq Inflammation Panel 250 assay (Ala-

mar Biosciences) on an Alamar ARGO prototype system following

established protocols.17,18 Briefly, we centrifuged thawed plasma at

10,000 × g for 10 minutes to remove particulates followed by incuba-

tion with DNA-barcoded capture and detection antibodies. We puri-

fied immunocomplexes andgenerated complementaryDNAsequences

via ligation of paired antibody barcodes using T4 DNA ligase and a

specific DNA ligator sequence. We quantified reporter DNA levels

by next-generation sequencing. Sequencing was performed by Novo-

gene Co., Ltd. on an Illumina NovaSeq 6000 platform with a PE150

sequencing kit. Quality control included duplicate sample controls,

triplicate inter-plate controls, and duplicate negative controls. We cal-

culated NULISA protein quantification (NPQ) values by normalizing

target counts to internal control counts perwell followedbynormaliza-

tion to the median inter-plate control counts and log2 transformation.

We calculated fold-changes between experimental groups as 2ΔNPQ.

The mean coefficients of variation for sample control duplicates were

12.36% and 13.72% across 127 biomarkers in the CNS Disease Panel

120 assay and across 250 biomarkers in the Inflammation Panel 250

assay, respectively. We measured the Aβ42/40 ratio as well as levels

of p-tau217, p-tau181, glial fibrillary acidic protein (GFAP), and NfL in

350 µL plasma on a Quanterix HD-X with Quanterix NEUROLOGY 4-

PLEX E (Aβ40, Aβ42, GFAP*, Nf-L; 103670), pTau-217 (SimoaALZpath)

Assay (104570), or a pTau-181 Advantage V2.1 kit (104111) where

appropriate.

2.4 Discriminative performance evaluation

We evaluated the accuracy of Aβ PET status classification by calculat-

ingAUCsusing theauc() function fromtheRpROCpackage (v1.18.5).23

The comparisons includedCL>30versusCL<10aswell asCL10 to30

versus CL < 10. We assessed differences between receiver operating

characteristic (ROC) curves using aDeLong test.Weused thepr.curve()

function of the PRROC R package (v1.4)24 to perform precision recall

analysis.

2.5 Associations between proteomics and Aβ PET
status

We evaluated the associations between plasma biomarkers and Aβ
PET status using linear regression models, adjusting for age, sex,

apolipoprotein E (APOE) ε4 genotype dose, and years of education.

To facilitate comparison of effect sizes, which are reported as stan-

dardized β coefficients, we standardized plasma proteomic data by
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z score. To profile the trajectories of dysregulated plasma proteins in

Aβ PET statuses, we set the level of significance to |β| > 0.25. We

determined the associations between dysregulated plasma proteins

and AD-associated endophenotypes by linear regression analysis with

the covariates above.

2.6 Associations between proteomics and Aβ PET
CL value

To reveal potential linear and non-linear associations, we visualized the

protein trajectories along Aβ PET CL values using a linear regression

model and a generalized additive model, respectively. We imple-

mented the linear regression model using the lmrob() function of the

robustbase R package (v0.99.4.1),25 adjusting for age, sex, APOE ε4
genotype dose, and years of education. We implemented the general-

ized additive model using the gam() function of the mgcv R package

(v1.9.1)26 with the Gamma (i.e., log-link) model family, adjusting for

the same covariates as above. We standardized continuous values

by z score. We optimized smoothness parameters by comparing the

Akaike information criterion (AIC) across γ values from 0.5 to 5. We

fit models using restricted maximum likelihood with term selection

enabled. We generated partial effect plots for CL associations using

the smooth_estimates() function at 100-point intervals and visualized

as a z-scored heatmap. We clustered proteins by row using the dist()

function of the Stats R package (v4.4.2)27 and the hclust() function

according to the Ward.D2 method. We set the level of significance

to effective degrees of freedom (Edf) > 2 and p < 0.05. We resolved

duplicate proteins across panels by retaining the measurement with

the highest Edf. We visualized protein trajectories using locally esti-

mated scatterplot smoothing (LOESS) regression of protein levels

represented by partial effect.

2.7 Comparison of Aβ-associated proteins
between patients’ blood and brains

We determined if the Aβ-associated plasma proteins were present

in the proteomic data from human post mortem cortical tissues of

the Mount Sinai Brain Bank cohort (i.e., the parahippocampal gyrus

region, including 3305 and 2205 gene products positively and neg-

atively associated with Aβ, respectively).28 We then evaluated the

changes of their protein levels in associationwith Aβ plaquemean den-

sity in the brains. We performed protein mapping at the gene symbol

level.

2.8 Correlation network analysis

To evaluate pairwise correlations among plasma proteins, we calcu-

lated Pearson correlation coefficients (r) using the cor() function. To

identify clustering patterns, we performed hierarchical agglomera-

tive clustering on the correlation matrix, using the dist() function to

establish a Euclidean distance matrix. We subsequently carried out

clustering using the hclust() function, using theWard.D2method.

2.9 Predictive modeling analysis

To identify proteomic features associated with Aβ PET CL estimation,

we used LASSO regression because of its ability to select a minimal set

of predictive features, computational efficiency enabling robust boot-

strap resampling, and reduced risk of overfitting.We conductedmodel

training using the caret and glmnet R packages.29 We applied a nested

10-fold cross-validation procedure to 100 bootstrap samples gener-

ated from the feature selection dataset.We usedweighted sampling to

address the distribution imbalance of Aβ PET CL values. We evaluated

each protein based on its recurrence across 100 bootstrap iterations,

with each iteration randomly sampling 75% of the full dataset, yield-

ing scores ranging from 0 to 100. To compute probability scores for

Aβ PET CL prediction and classification, we integrated proteins identi-

fied through this process into multiple machine learning frameworks,

including random forest (RF) in the randomForest R package (v4.7–

1.2),30 XGBoost (XGB) in the xgboost R package (v1.7.11.1),31 support

vectormachine (SVM) in the e1071 R package (v1.7-16),32 LASSO, and

generalized linear models (GLMs) in the glmnet R package (v4.1-8).33

We assessed model performance by Spearman correlation analysis

and ROC curve evaluation. To assess the contribution of each feature

toward the prediction performance, we applied the SHapley Additive

exPlanations (SHAP) analysis in the kernelshap R package (v0.7.0)33

and the shapviz R package (v0.9.7).34

2.10 Statistical analysis and data visualization

We performed all statistical analyses and generated figures using

R (version 4.4.2). We used the Wilcoxon rank-sum test to compare

continuous variables between two groups. We used Spearman rank

correlation to evaluate the strength and direction of the associations

between two continuous variables.We set the level of statistical signif-

icance for all comparisons at p < 0.05 and calculated 95% confidence

intervals. We used the ggplot() function of the ggplot2 R package

(v3.5.1)35 to generate box plots, scatter plots, volcano plots, line charts,

and bar plots. We used the pheatmap() function of the pheatmap R

package (v1.0.12)36 to generate heatmaps and correlation matrices.

We used the ggroc() function of the pROC R package to generate ROC

curves.

3 RESULTS

3.1 Associations of plasma ATN biomarkers with
Aβ pathology in the Hong Kong Chinese population

NULISAseq can simultaneously measure 325 targets, including cen-

tral nervous system disease biomarkers (e.g., Aβ42/40 ratio, p-tau217,
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TABLE 1 Participant characteristics.

Aβ PET Centiloid status

Parameter All <10 10–30 >30 p value

Sample size (N) 179 60 12 107 —

Clinical diagnosis

NC 34 32 1 1 —

MCI 62 16 5 41 —

AD 71 0 6 65 —

Non-AD dementia 12 12 0 0 —

Age, years; mean (SD) 72.0 (7.2) 70.5 (7.5) 74.0 (7.3) 72.0 (7.0) 0.16

Sex, % female 58.1 53.3 50.0 61.7 0.49

Education, years; mean (SD) 9.0 (4.8) 11.0 (4.5) 6.0 (5.5) 6.0 (4.5) 0.001

MoCA score, mean (SD) 19.0 (7.2) 26.0 (6.2) 19.5 (5.7) 15.0 (5.9) <0.001

Aβ PET Centiloid, mean (SD) 48.3 (39.4) −2.8 (5.3) 17.4 (6.1) 69.3 (23.9) <0.001

APOE ε4 carriers, % 24.2 8.1 25.0 58.7 <0.001

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; APOE, apolipoprotein E; MCI, mild cognitive impairment; MoCA, Montreal Cognitive Assessment;

NC, normal control; PET, positron emission tomography; SD, standard deviation.

p-tau231, and NfL) and inflammatory biomarkers (e.g., chemokine

ligand 2 [CCL2] and chemokine ligand 3 [CXCL3]). We applied this

advanced technology to our Hong Kong Chinese cohort (n = 179;

Figure S4 in supporting information). We classified participants based

on their Aβ pathology status assessed by Aβ PET imaging and CL quan-

tification. This classification resulted in three groups: 60 individuals

with no or low Aβ (AβLow, CL < 10), 12 with intermediate levels of

Aβ (AβInt, CL 10–30), and 107 with high Aβ levels (AβHigh, CL > 30;

Table 1). As expected, nearly all individuals in the AβInt and AβHigh

groups (98.3%) were diagnosed with cognitive impairment (i.e., MCI or

dementia) compared to 20% in the AβLow group.

We first cross-validated NULISAseq-based ATN biomarkers by

comparing their levels to those measured by SIMOA assay. Measure-

ments of the three p-tau biomarkers (rp-tau217 = 0.88, rp-tau231 = 0.90,

rp-tau181 = 0.87, all p < 2.2 × 10−16) and NfL (r = 0.87, p < 2.2 × 10−16)

were strongly correlatedbetween the twoassayplatforms.Meanwhile,

the NULISAseq and SIMOA measurements of the Aβ42/40 ratio were

weakly correlated (r = 0.16, p = 4.2 × 10−2; Figure S5 in supporting

information).

Next, we examined the changes of the Aβ42/40 ratio as well as p-

tau217, p-tau231, p-tau181, and NfL levels across different stages of

brainAβpathology (i.e., theAβLow, AβInt, andAβHigh groups). Among the

five measured ATN biomarkers, only p-tau217 and p-tau231 showed

significant dysregulation at both theAβInt andAβHigh stages (p-tau217:
dInt = 1.18, dHigh = 2.48; p-tau231: dInt = 1.02, dHigh = 2.03; all p< 0.05;

Figure 1B, C), suggesting that they are strongly associated with the

development of brain amyloid pathology. In comparison, the Aβ42/40
ratio (d = −0.35, p < 0.05), p-tau181 level (d = 1.34, Pp < 0.05),

and NfL level (d = 0.60, p < 0.05) were only dysregulated in the

AβHigh group (Figures 1A, D and S6A in supporting information), sug-

gesting their late involvement during brain amyloid accumulation.

These findings are consistent with previous studies of NULISAseq

and SIMOA-based ATN biomarkers in populations of European

descent.18,37,38

Furthermore, we examined the performance of these ATN biomark-

ers for classifying Aβ pathology status. For distinguishing individuals

in the AβHigh group from the AβLow group, p-tau217 performed best

(AUC = 0.95) followed by p-tau231 (AUC = 0.92) and p-tau181

(AUC = 0.82); meanwhile, both the Aβ42/40 ratio and NfL level

showed low accuracy for distinguishing the two groups (Figures 1E,

S6B). Notably, for distinguishing between individuals the AβInt and

AβLow groups, only p-tau217 achieved an AUC > 0.8 (AUC = 0.81)

and was closely followed by p-tau231 (AUC = 0.79); meanwhile, p-

tau181 (AUC = 0.67), the Aβ42/40 ratio (AUC = 0.51), and NfL

(AUC = 0.56) all had AUCs < 0.7 (Figures 1F, S6C). This indicates that

these blood ATN biomarkers are insufficient for accurately classify-

ing early Aβ deposition. Moreover, only p-tau217 (AUC = 0.81) and

p-tau231 (AUC = 0.80) had AUCs > 0.8 for distinguishing between the

AβInt and AβHigh groups (Figures 1G, S6D), which is still inadequate for
staging brain amyloid pathology. Taken together, the NULISAseq data

validate the performance of blood-based ATN biomarkers for classi-

fying brain amyloid pathology in the Hong Kong Chinese cohort, with

plasma p-tau217 and p-tau231 accurately detecting established Aβ
pathology. Nonetheless, none of these existing blood ATN biomarkers

demonstrated sufficient performance for classifyingor staging earlyAβ
pathology.

3.2 Identification of plasma proteomic signatures
at early and established stages of Aβ accumulation

In addition toknownATNbiomarkers, otherbloodproteinsmaybedys-

regulated upon the development of AD and amyloid pathology, poten-

tially aiding disease classification and assessment of progression.39,40
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ZHENG ET AL. 7 of 17

F IGURE 1 Association between plasma ATN biomarkers measured by NULISAseq and Aβ pathology. A–D, Box plots showing the plasma (A)
Aβ42/40 ratio, (B) p-tau217 level, (C) p-tau231 level, and (D) NfL level stratified by Aβ pathology status (i.e., AβLow, CL< 10; AβInt, CL 10–30;
AβHigh, CL> 30). A, Aβ42/40 ratio comparison (d= 0.10, p= 0.76 for AβInt vs. AβLow; d=−0.35, p= 0.03 for AβHigh vs. AβLow). B, p-tau217
comparison (d= 1.18, p= 4.64 × 10−3 for AβInt vs. AβLow; d= 2.48, p= 2.80× 10−35 for AβHigh vs. AβLow). C, p-tau231 comparison (d= 1.02,
p= 5.36× 10−3 for AβInt vs. AβLow; d= 2.03, p= 5.17× 10−26 for AβHigh vs. AβLow). D, NfL comparison (d= 0.18, p= 0.53 for AβInt vs. AβLow; d= 0.6,
p= 4.32× 10−4 for AβHigh vs. AβLow). E–G, ROC curves with corresponding AUCs showing the cross-analytical platform comparison of diagnostic
performance of the ATN plasma biomarkers for classifying individuals by Aβ pathology status: (E) AβHigh versus AβLow, (F) AβInt versus AβLow, and
(G) AβHigh versus AβInt. E, Classification of the AβHigh versus AβLow groups (Aβ42/40 ratio AUC= 0.52, p-tau217 AUC= 0.95, p-tau231
AUC= 0.92, NfL AUC= 0.66). F, Classification of the AβInt versus AβLow groups (Aβ42/40 ratio AUC= 0.51, p-tau217 AUC= 0.81, p-tau231
AUC= 0.79, NfL AUC= 0.56). G, Classification of the AβHigh versus AβInt groups (Aβ42/40 ratio AUC= 0.51, p-tau217 AUC= 0.81, p-tau231
AUC= 0.80, NfL AUC= 0.65).Wilcoxon rank‑sum test; *p< 0.05, **p< 0.01, ***p< 0.001. Aβ, amyloid beta; AUC, area under the receiver operating
characteristic curve; CL, Centiloid; NfL, neurofilament light chain; NPQ, Nucleic Acid Linked Immuno‑Sandwich Assay protein quantified; PET,
positron emission tomography; p-tau, phosphorylated tau; ROC, receiver operating characteristic.

We usedNULISAseq to screen for novel blood-based protein biomark-

ers associatedwith brain amyloid pathology. Specifically,weperformed

linear regression analysis to determine the associations between each

of the 325 assayed protein levels and specific Aβ stages (i.e., AβHigh

vs. AβLow and AβInt vs. AβLow), adjusting for the effects of age, sex,

APOE ε4 genotype, and years of education. The analysis identified 67

proteins dysregulated in theAβHigh stage (p<0.05), including19upreg-

ulated and 48 downregulated proteins. Among the 20 proteins that

passed false discovery rate (FDR) correction (i.e., FDR < 0.05), the top

upregulated proteins included p-tau231, p-tau217, and GFAP, while

the topdownregulatedproteins includedagrin (AGRN), SMOC1, andp-

SNCA129 (Figure 2A and Table S3 in supporting information). We also

examined the blood proteomic changes in early Aβ pathology (i.e., the
AβInt stage) and identified 60 proteins that exhibited significant dys-

regulation (p < 0.05), including 6 upregulated and 54 downregulated

blood proteins (Figure 2B and Table S4 in supporting information).

Interestingly, only 27 blood proteins were significantly dysregulated

in both the AβHigh and AβInt stages compared to the AβLow stage,

including p-tau217 and p-tau231, and were consistently dysregulated

throughout brain amyloid pathology development (Figure S7, Table

S5 in supporting information). In comparison, several blood proteins,

such as ubiquitin, exhibited opposite dysregulation patterns in the

AβHigh and AβInt stages (i.e., being upregulated in the AβInt stage and

downregulated in the AβHigh stage). These findings indicate that the

dysregulation of the blood proteome exhibits complex, stage-specific

patterns during brain Aβ accumulation.

We subsequently categorized all 100 blood proteins dysregulated

in either the AβInt or AβHigh stage into five groups based on their

dysregulation patterns (Figures 2C and S8; Table S6 in supporting

information). Accordingly, 12 proteins (e.g., p-tau217 and p-tau231)
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8 of 17 ZHENG ET AL.

F IGURE 2 Plasma proteomic signatures at discrete stages of Aβ accumulation. A, B, Volcano plots showing the proteins dysregulated in the (A)
AβHigh versus AβLow and (B) AβInt versus AβLow groups. Linear regression adjusted by age, sex, APOE ε4 genotype dose, and years of education. Blue
and red dots represent down- and upregulated proteins, respectively, and dot size is proportional to p values (in−log10 scale). Gray and red dashed
lines indicate the uncorrected p value threshold and the FDR-corrected threshold, respectively. Proteins with an FDR< 0.05 are highlighted in
bold. C, Classification of protein groups defined by their dysregulation patterns across discrete Aβ pathology stages (Groups A–C).Within each
protein group, the dots and error bars in color represent themean value and standard deviation of the effect size on up- and downregulated
proteins, with the gray dots and lines representing the effect size on each protein. Aβ, amyloid beta; APOE, apolipoprotein E; CNS, central nervous
system; FDR, false discovery rate.

exhibited changes in the early stage of Aβ accumulation and showed

continued dysregulation in the established stage (group A). Eight pro-

teins (e.g., Aβ42 and HLA class II histocompatibility antigen, DR alpha

chain) were dysregulated in the early stage and then stabilized (group

B). Twelve proteins (e.g., neurofilament triplet protein, heavy subunit

[NfH] and POSTN) were specifically dysregulated in the established

stage of Aβ accumulation (group C), while 67 proteins (e.g., CCL24

and CX3CL1) were dysregulated only in the early stage (group D).

Finally, 1 protein, chitinase-3-like protein 1 (CHI3L1), was downregu-

lated in the early stage but upregulated in the established stage (group

E). Notably, examination of the associations between these five blood

protein groups and brain structural changes revealed distinct patterns

(Figure S9 in supporting information). Group A and C proteins were

most strongly associated with global brain region changes, corrobo-

rating their continuous roles in disease progression. In comparison,

group B and D proteins were more strongly associated with brain

regions that exhibit atrophy in the early stages of AD, including the

hippocampus and middle temporal gyrus,41 which is also consistent
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ZHENG ET AL. 9 of 17

with their dysregulation in the early stage of Aβ deposition. Hence, our
blood proteome profiling by NULISAseq identified novel blood protein

biomarkers associated with brain amyloid accumulation with distinct,

stage-specific dysregulation patterns.

3.3 Linear and non-linear proteomic dynamics
along Aβ accumulation

Given the complex patterns of blood proteomic dysregulation in AD, to

understand the dynamics of plasma protein alterations during Aβ accu-
mulation, we examined the trajectories of blood protein level changes

with increasing CL value and further performed hierarchical cluster-

ing analysis (Figure 3A). Most proteins (i.e., 268 proteins in clusters

2 and 3) exhibited a monotonic linear change across the AD contin-

uum. Meanwhile, 57 proteins in clusters 1 and 4 followed U-shaped

or inverted U-shaped trajectories with increasing Aβ accumulation,

suggesting a non-linear association with Aβ pathology.
Therefore, to systematically identify blood proteins that exhibit a

linear or non-linear dysregulation pattern, we performed linear regres-

sion analysis and generalized additivemethod analysis, respectively. As

a result, we identified 27 proteins correlated with Aβ pathology in a

linear manner (p < 0.05; Figure 3B and Table S7 in supporting infor-

mation) and 23 proteins correlated with Aβ pathology in a non-linear

manner (Edf>2, p<0.05; Figures 3C, S10; Table S8 in supporting infor-

mation). Among them, 7 proteins exhibited both linear and non-linear

characteristics.

To understand the biological meanings of these Aβ-associated
plasma proteins, we performed co-regulation network analysis. The

results yielded five different protein clusters with distinct co-

regulation patterns and biological roles (Figure 3D). Protein cluster

1 contained ATN(I) biomarkers (i.e., p-tau217, p-tau231, p-tau181,

microtubule associated protein tau [MAPT], and GFAP) and exhibited

continuous upregulation throughout Aβ accumulation. Protein cluster

2, associatedwith synaptic transmission (e.g., CHI3L1, NfH, and acetyl-

cholinesterase), and cluster 5, associated with leukocyte migration

(e.g., fibroblast growth factor 21, CCL19, and C-reactive protein), also

exhibited consistent up- and downregulation, respectively, plateauing

at the late stage of Aβ pathology. In contrast, protein clusters 3 and

4 exhibited non-linear associations with Aβ pathology: at the initial

stage of Aβ accumulation, proteins involved in the extracellular matrix

(e.g., enolase 2 [ENO2], fms related receptor tyrosine kinase 3 lig-

and [FLT3LG], and ubiquitin C-terminal hydrolase L1 [UCHL1]) were

downregulated while cytokine signaling proteins (e.g., CCL23, CCL14,

and interleukin 18 binding protein) were upregulated; their regulation

patterns reversed at the later stage of Aβ pathology. Together, these
results reveal dynamic proteomic dysregulation during the progres-

sion of Aβ pathology, highlighting distinct dysregulation patterns and

biological functions.

To investigate whether the plasma Aβ-associated proteins exhibit

similar changes linked to Aβ pathology in the brain, we first exam-

ined whether these Aβ-associated proteins identified in plasma are

also present as Aβ-associated proteins in the brains of AD patients.28

Specifically,weexamined the27plasmaproteins thatwere linearly cor-

related with CL values for their association with Aβ plaque mean den-

sity in patients’ brains. Seven proteins (i.e., AGRN, galectin 9 [LGALS9],

SMOC1, CHI3L1, vascular cell adhesion molecule 1 (VCAM1), MAPT,

andGFAP)were significantly associatedwith brainAβ pathology (Table
S9 in supporting information). Four of them (i.e., CHI3L1, VCAM1,

MAPT, and GFAP) exhibited concordant changes between plasma and

the brain, being positively correlated with Aβ plaque levels. In con-

trast, three proteins (i.e., AGRN, LGALS9, SMOC1) showed discordant

changes between plasma and the brain, with their levels increas-

ing in the brain but decreasing in plasma, being associated with Aβ
plaque pathology (Figure S11 in supporting information). Furthermore,

we examined the overlap between 23 plasma proteins non-linearly

correlated with CL values and brain plaque mean density-associated

proteins. Five proteins (i.e., CHI3L1, ENO2, GFAP, IL16, and UCHL1)

were identified in both plasma and the brain (Table S9). Collectively,

these findings suggest that specific plasma Aβ-associated proteins

share brain proteomic signatures correlatedwith Aβ plaque pathology,
highlighting potential molecular components of disease progression.

3.4 Prediction of continuous Aβ accumulation
using an eight-protein biomarker panel developed by
machine learning

Given the identification of novel blood protein biomarkers associated

with different stages of Aβ pathology, we investigated their poten-

tial for predicting continuous Aβ accumulation. Accordingly, we used

a machine learning-based model, the LASSO model, to select protein

candidates with the best predictive capabilities (Figure 4A). Through

100 iterations of randomly sampled data from 75% of the partici-

pants in our cohort, eight blood proteins, including p-tau217, p-tau231,

POSTN, SMOC1, and KLK6 from the CNS 120 panel as well as CD4,

NTF3, and PGF from the Inflammation 250 panel, were consistently

selected by the model at least 75 times (Figure 4B). Among these

eight proteins, p-tau217, p-tau231, NTF3, and PGF were positively

associated with Aβ pathology, while CD4, POSTN, SMOC1, and KLK6

were negatively associated (Figure 4C). Specifically, p-tau217 and p-

tau231 levels increased consistently across the AD continuum, while

NTF3 and PGF levels were primarily elevated in the later stages

(Figure 4D). In contrast, POSTN and KLK6 levels declined as Aβ
accumulated, while CD4 and SMOC1 levels showedmore complex tra-

jectories, being upregulated in the early stage of disease progression

but downregulated in the later stage (Figure 4D).

Next, we evaluated the performance of machine learning-based

models that included the eight abovementioned blood proteins

togetherwith ageand sexas covariates for predictingAβpathology.We

tested five types of machine learning models: RF, XGB, SVM, LASSO,

and the GLM. The SVM-derived model showed the highest predic-

tive accuracy and robustness in both the training dataset (r = 0.86,

p < 2.2 × 10−16, root mean square error [RMSE] = 19.89) and test-

ing dataset (r = 0.89, p < 2.2 × 10−16, RMSE = 12.69; Figure 4E and

Table S10 in supporting information). Compared to the SVM-derived
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10 of 17 ZHENG ET AL.

F IGURE 3 Plasma protein trajectories along continuous progression of Aβ pathology. A, Trajectory of protein alterations alongside Aβ
accumulation. Left panel: Heatmap showing estimated protein level trajectories along increasing Aβ PET CL values, adjusted by age, sex, APOE ε4
genotype dose, and years of education. Each line represents a distinct protein. Colors indicate the estimated protein level, with blue and red
representing below- and above-average levels, respectively. Right panel: LOESS plots show protein trajectories within each cluster. B, C, Volcano
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ZHENG ET AL. 11 of 17

model, the RF- and XGB-derived models achieved higher accuracy in

the training dataset (rRF = 0.96, rXGB = 0.97, both p < 2.2 × 10−16)

but lower accuracy in the testing dataset (rRF = 0.81, rXGB = 0.81,

both p < 2.2 × 10−16), suggesting a high risk of overfitting. There-

fore, we selected the SVM-derived model (“CL predictor” hereafter)

for further analysis. For predicting Aβ pathology, the CL predictor sig-
nificantly outperformed each individual protein, including p-tau217

(r = 0.77, p < 2.2 × 10−16), p-tau231 (r = 0.65, p < 2.2 × 10−16),

and CD3 (r = 0.43, p < 0.05; Figure 4F and Table S11 in supporting

information). To further investigate the predictive contribution of each

protein in the CL predictor, we performed SHAP value analysis. Over-

all, p-tau217 (mean[|SHAPvalue|]=16.18) andp-tau231 (mean[|SHAP

value|] = 14.08) contributed most to the prediction outcome of the

CL predictor. The remaining six proteins exhibited smaller influences

(mean[|SHAP value|]: CD4 = 3.51, KLK6 = 3.38, SMOC1 = 3.09,

POSTN = 3.04, NTF3 = 2.73, and PGF = 2.14; Figure S12 in support-

ing information). We further conducted a detailed per-sample analysis

of feature contributions and interactions, revealing that these six pro-

teins had high SHAP values in the prediction of certain samples and

contributed to improved prediction precision. These findings suggest

that although theseproteins have limitedoverall importanceacross the

dataset, theyplay a critical role in accurately predicting individual cases

(Figures 4G, S13 in supporting information).

3.5 Classification of early Aβ pathology by the
eight-protein CL predictor

As mentioned above, existing blood ATN biomarkers lack sufficient

accuracy for classifying the early stage of Aβ pathology (maxi-

mum AUC = 0.81 for AβInt vs. AβLow; Figure 1F). Given that the

eight-protein CL predictor predicted continuous Aβ accumulation

better than the traditional blood ATN biomarkers, we investigated

whether this panel also enhances the detection and staging of Aβ
pathology. While both the eight-protein CL predictor and p-tau217

showed high accuracy for detecting established Aβ pathology

(AUCCL predictor = 0.99 and AUCp-tau217 = 0.97 for AβHigh vs. AβLow;
Figure S14 in supporting information), the eight-protein CL predic-

tor classified the early stage of Aβ pathology more accurately than

p-tau217 or p-tau231 (AUCCL predictor = 0.93, AUCp-tau217 = 0.78,

and AUCp-tau231 = 0.79 for AβInt vs. AβLow; Figure 4H). The

eight-protein CL predictor also showed higher sensitivity and

specificity (sensitivityCL predictor = 0.99, sensitivityp-tau217 = 0.78,

sensitivityp-tau231 = 0.91, specificityCL predictor = 0.84,

specificityp-tau217 = 0.76, specificityp-tau217 = 0.67 for AβInt vs. AβLow).
Furthermore, the eight-protein CL predictor outperformed p-tau217

in differentiating the early and established stages of Aβ pathology

(AUCCL predictor = 0.89, AUCp-tau217 = 0.83, and AUCp-tau231 = 0.82 for

AβInt vs. AβHigh; Figure 4I), suggesting that the panel is better suited

for staging Aβ pathology. In addition, to validate the specificity of the

eight-protein CL predictor and p-tau217 for detecting Aβ pathology,

we assessed their performance in a small cohort of 12 patients with

Aβ+AD and 12 with Aβ−non-AD dementia. Consistently, both the

eight-protein CL predictor and p-tau217 showed comparably high

performance in differentiating patients with Aβ+ from those with Aβ−

non-AD dementia (AUCCL predictor = 0.996 and AUCp-tau217 = 0.987

for Aβ+ AD vs. Aβ− non-AD dementia; Figure 4J). Thus, our results

demonstrate that the eight-protein CL predictor not only accurately

predicts continuous Aβ accumulation, but is also more accurate for

detecting early Aβ pathology than traditional blood ATN biomarkers.

4 DISCUSSION

Given the emergence of blood-based biomarkers as promising tools

for diagnosing and managing AD, it is crucial to develop assays to

accurately quantify Aβ pathology. In this study, we comprehensively

profiled the plasma proteome of individuals with varying degrees

of Aβ pathology and identified 43 proteins significantly linearly or

non-linearly correlated with Aβ levels. Notably, these Aβ-associated
proteins exhibit unique dysregulation patterns as Aβ pathology pro-

gresses and are involved in distinct biological processes, such as innate

immunity, adaptive immunity, and angiogenesis. These findings suggest

that the plasma proteome undergoes dynamic alterations through-

out Aβ accumulation, indicating that evaluating proteins with distinct

trajectories is a potential strategy for accurately quantifying Aβ lev-

els. Based on these insights, we used machine learning methods to

select a panel of eight proteinswith unique dysregulation patterns.We

constructed a model termed the CL predictor, which predicts CL val-

ues more accurately than plasma p-tau217 or p-tau231 (r = 0.89 vs.

plots illustrating the (B) linear and (C) non-linear correlations between protein levels and CL values. B, Volcano plot illustrating the linear
correlation between protein level and CL values. The analysis was adjusted by age, sex, APOE ε4 genotype dose, and years of education. Blue and
red dots represent down- and upregulated proteins, respectively. C, Volcano plot showing the non-linear correlations between protein levels and
CL values. Dot color intensity is proportional to Edf. D, Biological processes related to the Aβ pathology-associated proteins. Upper panel:
Heatmap displaying pairwise correlations among plasma proteins correlated with Aβ accumulation. Each row and column represents one protein,
with color intensity indicating the strength and direction of correlation. Lower panel: LOESS plots show the representative trajectories within each
cluster. In volcano plots, dot size is proportional to the p value (in−log10 scale), the gray dashed line indicates the uncorrected p value threshold,
and the red dashed line indicates the FDR-corrected threshold. Proteins with an FDR< 0.05 are shown in bold text. In the LOESS plots, each gray
line represents a distinct protein, and the blue line represents the representative trajectories defined by themedian value within each cluster, with
the 0.25 and 0.75 quantile intervals shown in light blue. Aβ, amyloid beta; APOE, apolipoprotein E; CL, Centiloid; CNS, central nervous system;
ECM, extracellular matrix; Edf, effective degrees of freedom; FDR, false discovery rate; LOESS, locally estimated scatterplot smoothing; PET,
positron emission tomography.
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12 of 17 ZHENG ET AL.

F IGURE 4 Machine learning-basedmodeling of a plasma protein panel for predicting Aβ pathology on a continuous scale. A, Study workflow.
B, Bar plot depicting the selection frequency for identifying themost informative proteins across iterations by bootstrapping and the LASSO
regressionmodel. Proteins consistently selected in> 75% of bootstrap samples (i.e., eight proteins) constitute the Aβ pathology prediction panel
(termed the “CL predictor”). C, Violin plot showing the distribution of bootstrap-derived coefficients for candidate proteins, reflecting their
relative importance inmodel selection. D, LOESS plot showing the trajectories of proteins in the CL predictor against Aβ PET CL values. The first
and second dashed lines correspond to early Aβ pathology (CL= 10) and established Aβ pathology (CL= 30), respectively. E, Correlations between
actual Aβ PET CL values and predicted values by the CL predictor were evaluated separately in the training dataset (r= 0.86, p< 2.2× 10−16) and
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ZHENG ET AL. 13 of 17

rp-tau217 = 0.77, rp-tau231 = 0.74, respectively). Furthermore, the CL

predictor ismore sensitive in identifying individualswith earlyAβ accu-
mulation (AUC = 0.93 vs. AUCp-tau217 = 0.78, AUCp-tau231 = 0.79,

respectively), facilitating the identification of high-risk populations.

Collectively, these findings highlight the potential of blood-based

biomarkers for the early detection, precise staging, and efficacy mon-

itoring of Aβ pathology, offering a promising tool for clinical practice

and trials of Aβ-targeting therapeutic strategies.
Quantifying Aβ PET using the CL scale is a robust and widely

used approach for quantifying Aβ pathology.4,5 The CL scale supports
identification of individuals eligible for anti-Aβ therapy, monitoring of

reductions in Aβ deposition after treatment, and decisions on thera-

peutic endpoints.42 Identifying plasma protein biomarkers associated

with CL values could be a more cost effective and accessible alterna-

tive toAβPET. In this study,we show that theplasmaproteomeexhibits

stage‑dependent alterations during Aβ accumulation (Figures 2C, S5;

Table S6). Alongside well-known biomarkers (e.g., p-tau217), adap-

tive immunity-related proteins, including IL-17B (interleukin-17B)43

and IL-7 (interleukin-7),44 are monotonically associated with brain

Aβ accumulation. This is consistent with findings that stronger adap-

tive immune responses are correlated with greater AD severity.45

Importantly,we found someproteins that exhibit stage‑specific dysreg-
ulation. For example, among individuals with established Aβ pathology,
proteins linked to neuronal integrity (e.g., NfL46) and vascular func-

tion (e.g., VCAM147) are specifically dysregulated, which is consistent

with evidence that axonal degeneration and cerebrovascular dysfunc-

tion become more prominent in the later stages of AD. Interestingly,

innate immunity-related proteins, such as TNFSF14 (TNF superfam-

ily member 14)40 and CX3CL1 (C-X3-C motif chemokine ligand 1),48

are specifically dysregulated in the early stage. Previous investiga-

tions of the plasma levels of these innate immune mediators in AD

and healthy individuals have yielded conflicting results as to whether

and towhat extent dysregulation occurs.49–51 Our results may suggest

that their levels follow a non-linear trajectory across AD progres-

sion, exhibiting early dysregulation followed by reversal. Concordant

with previous studies,52,53 these stage‑dependent alterations sup-

port that systemic proteomic changes—not limited to pathological

biomarkers—are strongly associated with the advancement of Aβ
pathology. Interestingly, our analysis reveals several proteins asso-

ciated with Aβ plaques in both plasma and the brain. Among them,

proteins related to inflammatory response (e.g., CHI3L1) showed con-

cordant relationships between plasma and the brain, whereas those

related to nervous system development (e.g., AGRN) exhibited discor-

dant relationships. These results suggest that the relationship between

plasma and brain protein levels may vary during the progression of

Aβ pathology depending on specific pathways. Understanding these

compartment-specific protein dynamics may help uncover the biology

of Aβ pathology.
While blood biomarkers are promising diagnostic tools for Aβ

pathology,54 they are not yet clinically implemented for biological

staging. By itself, the leading candidate, p-tau217, is not effective for

staging given its insufficient AUC in differentiating AβInt and AβHigh

individuals. This may be because the plasma levels of these biomark-

ers change significantly during early pathogenesis but then level off as

Aβ continues to accumulate.10,55–57 Thus, although these biomarkers

can indicatepositivity or negativity ofAβpathology, they arenot reflec-
tive of the cumulative amount of Aβ. In the latest AD framework,13 the

National Institute on Aging–Alzheimer’s Association (NIA‑AA) Work-

ingGroup outlines a conceptual fluid‑only staging scheme that is based

on the sequence of abnormal biomarker emergence, starting with

p‑tau (i.e., p-tau181, p‑tau217, or p‑tau231), followed by p-tau205,

then MTBR‑tau243, and finally non‑phosphorylated mid‑domain tau

fragments. This highlights the potential of combining biomarkers with

distinct temporal dynamics for staging. Accordingly, we harnessed

advancedmachine learning techniques to capture interaction patterns

and non-linear relationships among blood proteins. This yielded an

eight-protein panel, termed the CL predictor, comprising p‑tau217,
p‑tau231, CD4, NTF3, PGF, SMOC1, KLK6, and POSTN. Each of these

proteins has been reported to be associated with AD through distinct

pathological pathways: p-tau217 and p-tau231 indicate pathologi-

cal progression; CD4 denotes immune-cell regulation58; NTF3 pro-

motes neuronal survival59; PGF drives angiogenesis60; and SMOC1,12

KLK6,61 and POSTN62 coordinate extracellular matrix remodeling and

leukocytemigration.

By integrating these blood proteins, the CL predictor improves

the precision of blood‑based Aβ pathology quantification. Its output

is more strongly correlated with CL values than its individual con-

stituent biomarker proteins. Notably, the CL predictor better detects

intermediate-range Aβ pathology (i.e., CL 10–30) than individual

biomarkers. This range, linked to an elevated risk of cognitive decline,

test dataset (r= 0.89, p< 2.2× 10−16). The linear regression line with 95% confidence intervals, Spearman correlation coefficients (r), and p values
are shown. F, Bar plot comparing the prediction accuracy of the CL predictor and its individual protein components. Spearman correlation
coefficients (r) and p values are only shown for proteins exhibiting a significant correlation (i.e., p< 0.05). G, Beeswarm plot showing the SHAP
value of each feature in each sample. Color indicates the value of the feature. H–J, ROC curves comparing the classification performance of the CL
predictor and p-tau217 for distinguishing (H) individuals in the AβInt group from those in the AβLow group as well as (I) individuals in the AβInt group
from those in the AβHigh group. H, Classification of the AβInt versus AβLow groups (CL predictor AUC= 0.93, p-tau217 AUC= 0.78, p-tau231
AUC= 0.79). I, Classification of the AβInt versus AβHigh groups (CL predictor AUC= 0.89, p-tau217 AUC= 0.83, p-tau231 AUC= 0.82). J, ROC
curves comparing the classification performance of the CL predictor and p-tau217 for distinguishing individuals with clinically diagnosed AD or
non-AD dementia (CL predictor AUC= 0.996, p-tau217 AUC= 0.987). *p< 0.05, ***p< 0.001. Aβ, amyloid beta; AD, Alzheimer’s disease; AUC,
area under the receiver operating characteristic curve; CL, Centiloid; CNS, central nervous system; GLM, generalized linear model; LASSO, least
absolute shrinkage and selection operator; LOESS, locally estimated scatterplot smoothing; PET, positron emission tomography; p-tau,
phosphorylated tau; RF, random forest; ROC, receiver operating characteristic; SHAP, SHapley Additive exPlanations; SVM, support vector
machine; XGB, XGBoost.
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is a critical inflection point in AD progression and represents a window

for therapeutic intervention.42 With high accuracy and accessibility,

the CL predictor could broaden the use of blood‑based biomarkers in

clinical practice, supporting both early diagnosis and effective patient

management. Specifically, it can expand the scale of screening to enrich

clinical cohorts, particularly for early prevention studies such as the

AHEAD study.63 For patients, the CL predictor would facilitate an

increased frequency of testing to track Aβ accumulation, assess pro-

gression risk, and guide eligibility for anti‑Aβ therapies. Moreover,

the CL predictor could serve as a pharmacodynamic indicator that

precisely indicates the change in Aβ pathology after treatment to

inform clinical decisions. Hence, the CL predictor provides a prac-

tical blood‑based quantitative assessment of Aβ pathology and has

the potential to enhance early diagnosis, clinical management, and

therapeutic development for AD.

Advances in quantitative protein profiling have generated abun-

dant molecular fluid datasets, and machine learning is increasingly

important for translating these datasets into clinical applications, espe-

cially in biomarker discovery.20 Machine learning has been applied

to identify candidate biomarkers for AD,64 Parkinson’s disease,65

and Huntington’s disease.66 In our analysis, LASSO regression with

repeated random resampling and cross‑validation reduced325protein
candidates to a small and highly informative feature set. Bootstrap-

ping, only retaining features present in > 75% of runs, enhanced the

stability and reproducibility of predictors identified by LASSO regres-

sion. Cross‑validation67 further provided unbiased performance esti-

mates, mitigating overfitting. Together, these complementary strate-

gies enhanced the robustness of feature selection. After these steps,

we divided the data into training (75%) and test (25%) datasets to con-

struct and compare five models: LASSO regression, GLM, RF, SVM,

and XGB. The SVM model outperformed the others in predicting CL

values and showed comparable performance in the training and test

datasets, demonstrating good generalization. This may be attributable

to its capacity to manage high‑dimensional data and model com-

plex, non-linear relationships via kernel functions while maintaining

strong generalization through margin‑based regularization.20,68 This

balanced strategy appears to be suitable for the sample size and fea-

ture space of our dataset. In contrast, the predictive accuracy of the

ensemble tree methods, RF and XGB, was markedly lower on the

test dataset than on the training dataset. This may suggest that these

models overfit the training data,69 therefore resulting in diminished

performance when applied to unseen data. In addition, the LASSO

regression andGLMmodels performed consistently but less accurately

than the SVMmodel, likely because of their limited capacity to capture

non-linear relationships.70 Taken together, considering its high predic-

tive accuracy and generalization, we demonstrate that the SVMmodel

is feasible for integrating multiple protein biomarkers to accurately

indicate disease status.

Further validation andoptimizationwill promote the clinical transla-

tion of the CL predictor. While our analysis demonstrates associations

betweenprotein levels andAβ accumulation, further longitudinal study

will help validate the temporal evolution of these proteins. In addi-

tion, the robustness of the CL predictor, particularly for individuals

in the intermediate range of Aβ accumulation, may be constrained

by the limited sample size. Therefore, validation in larger cohorts is

essential to enable the clinical translation of our model. Furthermore,

in addition to Aβ pathology, recently published AD staging criteria

highlight the importance of assessing the location and extent of brain

tau accumulation (i.e., Aβ+ tau2
−, Aβ+ tau2MTL

+, Aβ+ tau2MOD
+, and

Aβ+ tau2HIGH
+).13 Future investigations of blood biomarkers for both

Aβ and tau pathology will provide insights for more comprehensive

blood-based staging of AD.

In summary, we comprehensively profiled the plasma proteome

dynamics during Aβ accumulation, identified novel proteins associated

with Aβ accumulation, and developed a high‑performance, eight-

protein panel for accurately quantifying Aβ pathology. Our findings

demonstrate the feasibility of integrating multiple plasma proteins to

improve the linear correlation between blood-based biomarkers and

cerebral Aβ pathology, thereby facilitating the early diagnosis, staging,
and prognosis of AD. Furthermore, our study provides crucial insights

for patient selection andmanagement in clinical practice and trials, par-

ticularly for emerging Aβ-targeting therapies, thereby paving the way
for advanced AD diagnostics and therapeutics.
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