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1 | INTRODUCTION

ZHENGET AL.

Abstract

INTRODUCTION: While current blood-based biomarkers for Alzheimer’s disease (AD)
are effective for determining amyloid beta (AB) pathology positivity/negativity, they
are insufficient for quantifying Ag plague deposition.

METHODS: We profiled 325 plasma proteins in a Hong Kong Chinese cohort using the
Nucleic Acid Linked Immuno-Sandwich Assay (NULISAseq) platform. We analyzed the
dysregulation trajectories of the blood proteome along A pathology progression and
used machine learning to develop a biomarker panel to quantify Ag pathology.
RESULTS: We identified 43 blood proteins correlated with AS plague accumulation
and selected 8 proteins to construct a model. This model was strongly correlated with
amyloid positron emission tomography Centiloid values (r = 0.89), enabling quantifi-
cation of AB deposition and classification of early-stage pathology (area under the
curve =0.93).

DISCUSSION: This study provides a systematic profile of dynamic protein alterations
during AB pathology progression. Moreover, we developed a biomarker assay that
accurately quantifies AB pathology, offering a potential tool to facilitate early screening
and monitoring of amyloid pathology.

KEYWORDS
Alzheimer’s disease, amyloid pathology, amyloid beta quantification, blood biomarkers, disease
staging, early detection, machine learning

Highlights

* Nucleic Acid Linked Immuno-Sandwich Assay (NULISAseq) was applied to profile the
blood proteome during the development of brain amyloid pathology.

» Different immune and neuronal biological processes exhibit distinct and stage-
specific dysregulation patterns during amyloid accumulation.

* A machine learning-based, eight-protein blood biomarker panel was developed to
accurately predict the quantitative extent of brain amyloid pathology.

* The eight-protein biomarker assay accurately detects early amyloid accumulation

and outperforms prediction based on phosphorylated tau 217 alone.

Continuous quantitative measures based on AG PET imaging, such as

the Centiloid (CL) scale, offer more objective assessments of progres-

Alzheimer’s disease (AD), the leading cause of dementia,! is character-
ized by two key neuropathological hallmarks: amyloid beta (AB) plaques
and tau neurofibrillary tangles.2 Cognitive assessments and biological
examinations—particularly evaluation of AS pathology—are essential
for clinical diagnosis of AD. Amyloid positron emission tomography
(PET) imaging is the gold standard for assessing brain AB pathology.
Its results are usually interpreted as either AS positive or A3 nega-
tive based on visual reads, guiding diagnosis and treatment eligibility.
However, this binary classification can be challenging if A levels are
close to the diagnostic threshold, potentially risking misclassification
and delayed intervention.®

sive AB accumulation. The CL scale standardizes AB pathology: values
< 10 indicate no pathology, while values > 30 indicate established
pathology.* This continuous approach enables the precise staging of A3
pathology, offering important clinical implications. It objectively cap-
tures early A accumulation in the “intermediate range” (i.e., CL values
between cutoffs), indicating evolving pathology and enhancing early
diagnosis.** It also helps monitor disease progression and therapeutic
response, which are crucial for timely and effective intervention.®
Although reliable, A PET imaging is costly and requires specialized
infrastructure, limiting accessibility. Therefore, blood-based biomark-

ers have emerged as less invasive, more accessible alternatives.”
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1. Systematic review: We conducted a comprehensive literature search on PubMed for all articles published from database inception to

»

Sep 3, 2025, without language restrictions using the following keywords: “Alzheimer’s disease,” “amyloid-3 positron emission tomog-

» o« » » o«

raphy,” “standardized uptake value ratio” “Centiloid,” “blood biomarker,” “amyloid,” “tau,” and “phosphorylated tau.” Previous studies
demonstrate the feasibility of blood-based protein biomarkers, particularly phosphorylated tau (p-tau) proteins, for the binary clas-
sification of amyloid beta (AB) pathology as positive/negative. However, growing evidence indicates that quantitative measures of A3
pathology are valuable for precise disease staging and monitoring pathological changes. Current blood biomarkers are inadequate
for this quantitative assessment, limiting their clinical utility for early detection, tracking pathological progression, and guiding timely
therapeutic intervention. Therefore, there is an urgent need for blood-based biomarkers that can indicate the quantitative extent of
AB pathology, enabling more accurate, accessible, and efficient assessment of the amount of brain AS plaques.

. Interpretation: This study provides the first systematic profile of blood proteomic alterations along A accumulation. We identified
novel blood biomarkers associated with AS pathology and delineated their complex, dynamic trajectories. Through co-regulation and
network analysis, we revealed that these biomarkers represent diverse biological processes, including synaptic transmission, immune
response, and extracellular matrix organization, and exhibit distinct dysregulation patterns during Aj pathology progression. Using
machine learning, we developed a panel of eight blood protein biomarkers that capture the heterogeneous dysregulation trajectories.
We further constructed a prediction model based on this panel that accurately predicts quantitative A pathology and sensitively
detects early AB accumulation. This model outperforms p-tau217 and p-tau231 for assessing nuanced AS level changes. Thus, this
model is a powerful, accessible tool that advances early diagnosis, patient stratification, and precision medicine for Alzheimer’s disease
(AD).

. Future directions: Our study underscores the value of profiling the blood proteome during continuous AB accumulation to discover
biomarkers that reflect progressive pathological changes, thereby enhancing the precision of blood-based staging. These findings sup-
port the development of high-performance blood assays for quantifying A3 pathology and monitoring its changes over time, which
would be invaluable for clinical trials and practice, especially for Ag-targeting therapies. Furthermore, these novel biomarkers, which
are involved in multiple biological pathways with distinct dynamics, enable a more refined and comprehensive evaluation of the AD
pathological continuum, potentially facilitating personalized treatment strategies. Future research will focus on validating the dynam-

ics of these biomarkers and integrating this holistic assessment into clinical workflows, which could transform the risk prediction,

diagnosis, and management of AD, paving the way for innovative therapeutic approaches.

Key AD blood biomarkers include A342/40 ratio, phosphorylated tau
species (p-tau; e.g., p-tau217, p-tau231, and p-tau181), and NfL (neuro-
filament light chain)—collectively termed the ATN biomarkers.® These
biomarkers, particularly blood p-tau217, show high concordance with
AB PET imaging in binary classification.? Notably, blood p-tau217 is
particularly correlated with the later stage of A accumulation, while
blood p-tau231 is more strongly correlated with the early stage, 1011
indicating that different biomarkers may better reflect distinct AB
pathology stages. Additionally, proteins related to synapse function,
immunity, and inflammation are also associated with A8 pathology,’?
and combining multiple biomarkers to leverage their complemen-
tary stage-dependent correlations may enhance diagnostic accuracy.®
However, further study is required to determine whether blood-based
biomarkers or combinations thereof accurately reflect A pathology as
well as the CL scale.'#1>

Novel platforms enable high-throughput quantification of multi-
ple biomarkers. NULISAseq (Nucleic Acid Linked Immuno-Sandwich
Assay) is a highly sensitive immunoassay that couples antibody-based
detection with next-generation sequencing,' allowing accurate, simul-
taneous measurement of multiple p-tau species and other proteins,

making it ideal for AD research.r’-1? Analyzing such complex pro-

teomic datasets requires advanced computational methods. Machine
learning, particularly least absolute shrinkage and selection oper-
ator (LASSO) models, is increasingly applied in biomarker panel
development.?° These models can select features with the highest
predictive value and thereby optimize the biomarker panel.

In this study, we used NULISAseq to reveal dynamic plasma pro-
teomic changes associated with brain A accumulation and applied
machine learning to develop a predictive biomarker panel. Specifi-
cally, we assessed 325 plasma proteins using the NULISA CNS Disease
Panel 120 and Inflammation Panel 250 assays in a Hong Kong Chi-
nese cohort that underwent A PET imaging and CL quantification.
We identified 43 proteins exhibiting linear or non-linear correlations
with brain AB deposition. Functional enrichment analysis revealed
that these proteins are involved in synaptic transmission, extracellular
matrix regulation, cytokine signaling, and leukocyte migration. We also
applied LASSO to identify key proteins for predicting A3 accumulation,
which highlighted eight proteins: p-tau217, p-tau231, and six other
AD-associated proteins (i.e., neurotrophin 3 [NTF3], placental growth
factor [PGF], secreted protein acidic and rich in cysteine-related mod-
ular calcium binding 1 [SMOC1], kallikrein-related peptidase 6 [KLK6],
cluster of differentiation 4 [CD4], and periostin [POSTN]). Based on
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these eight proteins, we constructed a machine learning model for
predicting continuous CL values, termed the“CL predictor,” which
demonstrated high accuracy (r = 0.89). Importantly, the CL predic-
tor outperformed p-tau217 for predicting both continuous CL values
and classifying early AB pathology (area under the receiver operating
characteristic curve [AUC] = 0.91). Taken together, we comprehen-
sively profiled the dynamics of the plasma proteome along brain
AB accumulation and developed a highly accurate blood biomarker
assay for the early detection, monitoring, and precise staging of AS
pathology.

2 | METHODS
2.1 | Participant recruitment

We recruited participants from the Hong Kong Chinese population.
The cohort comprised 179 Hong Kong Chinese individuals aged > 54
years, including 71 individuals with AD, 12 individuals with non-AD
dementia, 62 individuals with mild cognitive impairment (MCl), and 34
cognitively normal control (NC) individuals, who visited the Specialist
QOutpatient Department of the Prince of Wales Hospital of the Chi-
nese University of Hong Kong (CUHK-PWH), Division of Neurology
of CUHK-PWH, the Department of Medicine at Queen Mary Hospi-
tal, the Department of Medicine and Geriatrics at Tuen Mun Hospital,
or the Department of Medicine and Geriatrics at United Christian
Hospital. Participants underwent clinical examination, the Montreal
Cognitive Assessment (MoCA),2! blood collection for the measure-
ment of biomarkers, A8 PET using [11C]-Pittsburgh compound B (PiB),
and neuroimaging by magnetic resonance imaging (MRI).22 The clini-
cal diagnosis of MCl/dementia was based on a comprehensive clinical
evaluation conducted by medical practitioners. Each participant’s age,
sex, and years of education were recorded. The participants also under-
went T1-weighted MRI to quantify brain volumes. All participants or
the legal guardians of participants provided written informed consent
for study participation and sample collection. This study was approved
by the Joint Chinese University of Hong Kong-New Territories East
Cluster Clinical Research Ethics Committee at CUHK-PWH, the Insti-
tutional Review Board, Hospital Authority (CREC ref. no. 2015.461,
KC/KE-22-0107 /ER-2, UW 22-027, CIRB-2023-065-1), and Human
and Artefacts Research Ethics Committee (HAREC) at the Hong Kong
University of Science and Technology (HREP-2023-0179), and the
Human Participants Research Panel of The Hong Kong University of
Science and Technology (CRP#180).

2.2 | Imaging acquisition and quantification

T1-weighted structural images were acquired using 3-T MRI scanners.
AB PET imaging was performed using 11C-PiB PET (Methods S1, S2;
Figures S1-S3; Tables S1, S2 in supporting information). All partici-
pants were assigned to the AB-Y, A", or AgHiE" group according to

their amyloid status on PET irrespective of their cognitive status. Low

AB pathology on A PET was defined as < 10 CL units, intermediate
pathology as 10 to 30 CL units, and high pathology as > 30 CL units.

2.3 | Plasma protein measurement

We analyzed plasma samples using a NULISAseq CNS Disease Panel
120 assay and a NULISAseq Inflammation Panel 250 assay (Ala-
mar Biosciences) on an Alamar ARGO prototype system following
established protocols.'”-18 Briefly, we centrifuged thawed plasma at
10,000 x g for 10 minutes to remove particulates followed by incuba-
tion with DNA-barcoded capture and detection antibodies. We puri-
fied immunocomplexes and generated complementary DNA sequences
via ligation of paired antibody barcodes using T4 DNA ligase and a
specific DNA ligator sequence. We quantified reporter DNA levels
by next-generation sequencing. Sequencing was performed by Novo-
gene Co., Ltd. on an Illumina NovaSeq 6000 platform with a PE150
sequencing kit. Quality control included duplicate sample controls,
triplicate inter-plate controls, and duplicate negative controls. We cal-
culated NULISA protein quantification (NPQ) values by normalizing
target counts to internal control counts per well followed by normaliza-
tion to the median inter-plate control counts and log, transformation.
We calculated fold-changes between experimental groups as 2ANPQ
The mean coefficients of variation for sample control duplicates were
12.36% and 13.72% across 127 biomarkers in the CNS Disease Panel
120 assay and across 250 biomarkers in the Inflammation Panel 250
assay, respectively. We measured the AB42/40 ratio as well as levels
of p-tau217, p-tau181, glial fibrillary acidic protein (GFAP), and NfL in
350 pL plasma on a Quanterix HD-X with Quanterix NEUROLOGY 4-
PLEX E (AB40, AB42, GFAP* Nf-L; 103670), pTau-217 (Simoa ALZpath)
Assay (104570), or a pTau-181 Advantage V2.1 kit (104111) where
appropriate.

2.4 | Discriminative performance evaluation

We evaluated the accuracy of AB PET status classification by calculat-
ing AUCs using the auc() function from the R pROC package (v1.18.5).2°
The comparisons included CL > 30 versus CL < 10 aswellas CL 10to 30
versus CL < 10. We assessed differences between receiver operating
characteristic (ROC) curves using a DeLong test. We used the pr.curve()
function of the PRROC R package (v1.4)2* to perform precision recall

analysis.

2.5 | Associations between proteomics and A PET
status

We evaluated the associations between plasma biomarkers and A3
PET status using linear regression models, adjusting for age, sex,
apolipoprotein E (APOE) ¢4 genotype dose, and years of education.
To facilitate comparison of effect sizes, which are reported as stan-

dardized 8 coefficients, we standardized plasma proteomic data by

85UB01 7 SUOWILLIOD AIIERID B|cedl [dde 8y} Aq peue0b 812 Sao1Me YO 8SN JO S9INJ I0j AT aUIIUQ AB]IM UO (SUOTHPUOD-PUR-SWLBIAL0D" A 1M Ale.d 1 jBul Uo//Sciy) SUONIPUOD pue SWLB | 84} 885 *[9202/20/20] Uo Akeiqiauliuo A8|im *JO Aisieniun Buoyl BuoH Aq 6.TTZ Z[e/200T 0T/10p/L0d Ao | AReiqpuljuo S uINo -z [e//sdiy WOl pepeojumoq ‘Z ‘9202 ‘6.25255T



ZHENGET AL.

Alzheimer’s &Dementia® | sor1r

z score. To profile the trajectories of dysregulated plasma proteins in
AB PET statuses, we set the level of significance to |8| > 0.25. We
determined the associations between dysregulated plasma proteins
and AD-associated endophenotypes by linear regression analysis with
the covariates above.

2.6 | Associations between proteomics and Ag PET
CL value

To reveal potential linear and non-linear associations, we visualized the
protein trajectories along AS PET CL values using a linear regression
model and a generalized additive model, respectively. We imple-
mented the linear regression model using the Imrob() function of the
robustbase R package (v0.99.4.1),2° adjusting for age, sex, APOE ¢4
genotype dose, and years of education. We implemented the general-
ized additive model using the gam() function of the mgcv R package
(v1.9.1)2¢ with the Gamma (i.e., log-link) model family, adjusting for
the same covariates as above. We standardized continuous values
by z score. We optimized smoothness parameters by comparing the
Akaike information criterion (AIC) across y values from 0.5 to 5. We
fit models using restricted maximum likelihood with term selection
enabled. We generated partial effect plots for CL associations using
the smooth_estimates() function at 100-point intervals and visualized
as a z-scored heatmap. We clustered proteins by row using the dist()
function of the Stats R package (v4.4.2)27 and the hclust() function
according to the Ward.D2 method. We set the level of significance
to effective degrees of freedom (Edf) > 2 and p < 0.05. We resolved
duplicate proteins across panels by retaining the measurement with
the highest Edf. We visualized protein trajectories using locally esti-
mated scatterplot smoothing (LOESS) regression of protein levels
represented by partial effect.

2.7 | Comparison of AB-associated proteins
between patients’ blood and brains

We determined if the AjB-associated plasma proteins were present
in the proteomic data from human post mortem cortical tissues of
the Mount Sinai Brain Bank cohort (i.e., the parahippocampal gyrus
region, including 3305 and 2205 gene products positively and neg-
atively associated with AB, respectively).?® We then evaluated the
changes of their protein levels in association with AS plague mean den-
sity in the brains. We performed protein mapping at the gene symbol

level.

2.8 | Correlation network analysis

To evaluate pairwise correlations among plasma proteins, we calcu-
lated Pearson correlation coefficients (r) using the cor() function. To
identify clustering patterns, we performed hierarchical agglomera-

tive clustering on the correlation matrix, using the dist() function to

THE JOURNAL OF THE ALZHEIMER’'S ASSOCIATION

establish a Euclidean distance matrix. We subsequently carried out
clustering using the hclust() function, using the Ward.D2 method.

2.9 | Predictive modeling analysis

To identify proteomic features associated with A PET CL estimation,
we used LASSO regression because of its ability to select a minimal set
of predictive features, computational efficiency enabling robust boot-
strap resampling, and reduced risk of overfitting. We conducted model
training using the caret and glmnet R packages.2? We applied a nested
10-fold cross-validation procedure to 100 bootstrap samples gener-
ated from the feature selection dataset. We used weighted sampling to
address the distribution imbalance of A PET CL values. We evaluated
each protein based on its recurrence across 100 bootstrap iterations,
with each iteration randomly sampling 75% of the full dataset, yield-
ing scores ranging from O to 100. To compute probability scores for
AB PET CL prediction and classification, we integrated proteins identi-
fied through this process into multiple machine learning frameworks,
including random forest (RF) in the randomForest R package (v4.7-
1.2),%% XGBoost (XGB) in the xgboost R package (v1.7.11.1),°! support
vector machine (SVM) in the e1071 R package (v1.7-16),32 LASSO, and
generalized linear models (GLMs) in the glmnet R package (v4.1-8).33
We assessed model performance by Spearman correlation analysis
and ROC curve evaluation. To assess the contribution of each feature
toward the prediction performance, we applied the SHapley Additive
exPlanations (SHAP) analysis in the kernelshap R package (v0.7.0)33
and the shapviz R package (v0.9.7).3%

2.10 | Statistical analysis and data visualization

We performed all statistical analyses and generated figures using
R (version 4.4.2). We used the Wilcoxon rank-sum test to compare
continuous variables between two groups. We used Spearman rank
correlation to evaluate the strength and direction of the associations
between two continuous variables. We set the level of statistical signif-
icance for all comparisons at p < 0.05 and calculated 95% confidence
intervals. We used the ggplot() function of the ggplot2 R package
(v3.5.1)% to generate box plots, scatter plots, volcano plots, line charts,
and bar plots. We used the pheatmap() function of the pheatmap R
package (v1.0.12)3¢ to generate heatmaps and correlation matrices.
We used the ggroc() function of the pROC R package to generate ROC

curves.

3 | RESULTS

3.1 | Associations of plasma ATN biomarkers with
Ap pathology in the Hong Kong Chinese population

NULISAseq can simultaneously measure 325 targets, including cen-

tral nervous system disease biomarkers (e.g., AB42/40 ratio, p-tau217,
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TABLE 1 Participant characteristics.
AB PET Centiloid status

Parameter All <10 10-30 >30 p value
Sample size (N) 179 60 12 107 —
Clinical diagnosis

NC 34 32 1 1 =

MCI 62 16 5 41 =

AD 71 0 6 65 =

Non-AD dementia 12 12 0 0 =
Age, years; mean (SD) 72.0(7.2) 70.5(7.5) 74.0(7.3) 72.0(7.0) 0.16
Sex, % female 58.1 53.3 50.0 61.7 0.49
Education, years; mean (SD) 9.0(4.8) 11.0(4.5) 6.0(5.5) 6.0 (4.5) 0.001
MoCA score, mean (SD) 19.0(7.2) 26.0(6.2) 19.5(5.7) 15.0(5.9) <0.001
AB PET Centiloid, mean (SD) 48.3(39.4) -2.8(5.3) 17.4(6.1) 69.3(23.9) <0.001
APOE ¢4 carriers, % 242 8.1 25.0 58.7 <0.001

Abbreviations: AB, amyloid beta; AD, Alzheimer’s disease; APOE, apolipoprotein E; MCI, mild cognitive impairment; MoCA, Montreal Cognitive Assessment;

NC, normal control; PET, positron emission tomography; SD, standard deviation.

p-tau231, and NfL) and inflammatory biomarkers (e.g., chemokine
ligand 2 [CCL2] and chemokine ligand 3 [CXCL3]). We applied this
advanced technology to our Hong Kong Chinese cohort (n = 179;
Figure S4 in supporting information). We classified participants based
on their A pathology status assessed by A PET imaging and CL quan-
tification. This classification resulted in three groups: 60 individuals
with no or low A (A%, CL < 10), 12 with intermediate levels of
AB (ABM, CL 10-30), and 107 with high AB levels (AgHieh CL > 30;
Table 1). As expected, nearly all individuals in the A" and AgHigh
groups (98.3%) were diagnosed with cognitive impairment (i.e., MCl or
dementia) compared to 20% in the A% group.

We first cross-validated NULISAseq-based ATN biomarkers by
comparing their levels to those measured by SIMOA assay. Measure-
ments of the three p-tau biomarkers (r,.tay217 = 0.88, rp.tau231 = 0.90,
Fp-tau1s1 = 0.87, all p < 2.2 x 1071¢) and NfL (r = 0.87, p < 2.2 x 107%)
were strongly correlated between the two assay platforms. Meanwhile,
the NULISAseq and SIMOA measurements of the AB42/40 ratio were
weakly correlated (r = 0.16, p = 4.2 x 10~2; Figure S5 in supporting
information).

Next, we examined the changes of the A342/40 ratio as well as p-
tau217, p-tau231, p-tau181, and NfL levels across different stages of
brain A pathology (i.e., the A, Ag"" and AgHiE" groups). Among the
five measured ATN biomarkers, only p-tau217 and p-tau231 showed
significant dysregulation at both the Ag'™ and AgHieh stages (p-tau217:
dint = 1.18, dyjgp, = 2.48; p-tau231: di,e = 1.02, dyyign = 2.03; all p < 0.05;
Figure 1B, C), suggesting that they are strongly associated with the
development of brain amyloid pathology. In comparison, the AB42/40
ratio (d = —0.35, p < 0.05), p-tau181 level (d = 1.34, Pp < 0.05),
and NfL level (d = 0.60, p < 0.05) were only dysregulated in the
AgHigh group (Figures 1A, D and S6A in supporting information), sug-
gesting their late involvement during brain amyloid accumulation.
These findings are consistent with previous studies of NULISAseq

and SIMOA-based ATN biomarkers in populations of European
descent. 183738

Furthermore, we examined the performance of these ATN biomark-
ers for classifying AB pathology status. For distinguishing individuals
in the AgHi" group from the AW group, p-tau217 performed best
(AUC = 0.95) followed by p-tau231 (AUC = 0.92) and p-taul81
(AUC = 0.82); meanwhile, both the AB42/40 ratio and NfL level
showed low accuracy for distinguishing the two groups (Figures 1E,
S6B). Notably, for distinguishing between individuals the A and
ABLY groups, only p-tau217 achieved an AUC > 0.8 (AUC = 0.81)
and was closely followed by p-tau231 (AUC = 0.79); meanwhile, p-
tau181 (AUC = 0.67), the AB42/40 ratio (AUC = 0.51), and NfL
(AUC = 0.56) all had AUCs < 0.7 (Figures 1F, S6C). This indicates that
these blood ATN biomarkers are insufficient for accurately classify-
ing early AB deposition. Moreover, only p-tau217 (AUC = 0.81) and
p-tau231 (AUC = 0.80) had AUCs > 0.8 for distinguishing between the
AB""t and AgHigh groups (Figures 1G, S6D), which is still inadequate for
staging brain amyloid pathology. Taken together, the NULISAseq data
validate the performance of blood-based ATN biomarkers for classi-
fying brain amyloid pathology in the Hong Kong Chinese cohort, with
plasma p-tau217 and p-tau231 accurately detecting established AB
pathology. Nonetheless, none of these existing blood ATN biomarkers
demonstrated sufficient performance for classifying or staging early A

pathology.

3.2 | Identification of plasma proteomic signatures
at early and established stages of AB accumulation

In addition to known ATN biomarkers, other blood proteins may be dys-
regulated upon the development of AD and amyloid pathology, poten-
tially aiding disease classification and assessment of progression.3?40
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FIGURE 1 Association between plasma ATN biomarkers measured by NULISAseq and AB pathology. A-D, Box plots showing the plasma (A)
AB42/40 ratio, (B) p-tau217 level, (C) p-tau231 level, and (D) NfL level stratified by Ag pathology status (i.e., AB-°%, CL < 10; A@', CL 10-30;
ApHigh CL > 30). A, AB42/40 ratio comparison (d = 0.10, p = 0.76 for AG"™ vs. ABLOW: d = —0.35, p = 0.03 for AGi8" vs. AGLOW). B, p-tau217
comparison (d = 1.18, p = 4.64 x 1073 for Ag'" vs. ABXOW; d = 2.48, p = 2.80x 10~3° for AgHigh ys. ABLOW)_ C, p-tau231 comparison (d = 1.02,
p=5.36x 1073 for AB' vs. ABLOW; d = 2,03, p = 5.17x 10~2¢ for AHieh vs. ABLOW). D, NfL comparison (d = 0.18, p = 0.53 for Ag™ vs. ABLW; d = 0.6,
p=4.32x 104 for Aﬁ“‘gh vs. ABOW), E-G, ROC curves with corresponding AUCs showing the cross-analytical platform comparison of diagnostic
performance of the ATN plasma biomarkers for classifying individuals by A pathology status: (E) AB™8" versus AgLW, (F) A" versus AB-W, and

(G) AgHieN versus A E, Classification of the AN versus ABLOW groups (AB42/40 ratio AUC = 0.52, p-tau217 AUC = 0.95, p-tau231

AUC = 0.92, NfL AUC = 0.66). F, Classification of the Ag" versus ALY groups (A342/40 ratio AUC =0.51, p-tau217 AUC = 0.81, p-tau231

AUC =0.79, NfL AUC = 0.56). G, Classification of the AﬁHigh versus A,(i""t groups (AB42/40 ratio AUC =0.51, p-tau217 AUC = 0.81, p-tau231

AUC =0.80, NfL AUC = 0.65). Wilcoxon rank-sum test; *p < 0.05, **p < 0.01, ***p < 0.001. AB, amyloid beta; AUC, area under the receiver operating
characteristic curve; CL, Centiloid; NfL, neurofilament light chain; NPQ, Nucleic Acid Linked Immuno-Sandwich Assay protein quantified; PET,
positron emission tomography; p-tau, phosphorylated tau; ROC, receiver operating characteristic.

We used NULISAseq to screen for novel blood-based protein biomark-
ers associated with brain amyloid pathology. Specifically, we performed
linear regression analysis to determine the associations between each
of the 325 assayed protein levels and specific A8 stages (i.e., AgHish
vs. AW and A"t vs. ABLOW), adjusting for the effects of age, sex,
APOE ¢4 genotype, and years of education. The analysis identified 67
proteins dysregulated in the AB8" stage (p < 0.05), including 19 upreg-
ulated and 48 downregulated proteins. Among the 20 proteins that
passed false discovery rate (FDR) correction (i.e., FDR < 0.05), the top
upregulated proteins included p-tau231, p-tau217, and GFAP, while
the top downregulated proteins included agrin (AGRN), SMOC1, and p-
SNCA129 (Figure 2A and Table S3 in supporting information). We also
examined the blood proteomic changes in early Ag pathology (i.e., the
Ag'"t stage) and identified 60 proteins that exhibited significant dys-
regulation (p < 0.05), including 6 upregulated and 54 downregulated

blood proteins (Figure 2B and Table S4 in supporting information).
Interestingly, only 27 blood proteins were significantly dysregulated
in both the AgMieh and Ag" stages compared to the AW stage,
including p-tau217 and p-tau231, and were consistently dysregulated
throughout brain amyloid pathology development (Figure S7, Table
S5 in supporting information). In comparison, several blood proteins,
such as ubiquitin, exhibited opposite dysregulation patterns in the
AgHigh and A"t stages (i.e., being upregulated in the AB" stage and
downregulated in the AgHi8h stage). These findings indicate that the
dysregulation of the blood proteome exhibits complex, stage-specific
patterns during brain Ag accumulation.

We subsequently categorized all 100 blood proteins dysregulated
in either the AGM or AgHigh stage into five groups based on their
dysregulation patterns (Figures 2C and S8; Table Sé in supporting
information). Accordingly, 12 proteins (e.g., p-tau217 and p-tau231)
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Plasma proteomic signatures at discrete stages of A accumulation. A, B, Volcano plots showing the proteins dysregulated in the (A)

usted by age, sex, APOE ¢4 genotype dose, and years of education. Blue

and red dots represent down- and upregulated proteins, respectively, and dot size is proportional to p values (in—logq scale). Gray and red dashed
lines indicate the uncorrected p value threshold and the FDR-corrected threshold, respectively. Proteins with an FDR < 0.05 are highlighted in

bold. C, Classification of protein groups defined by their dysregulation patte

rns across discrete AB pathology stages (Groups A-C). Within each

protein group, the dots and error bars in color represent the mean value and standard deviation of the effect size on up- and downregulated
proteins, with the gray dots and lines representing the effect size on each protein. AS, amyloid beta; APOE, apolipoprotein E; CNS, central nervous

system; FDR, false discovery rate.

exhibited changes in the early stage of AS accumulation and showed
continued dysregulation in the established stage (group A). Eight pro-
teins (e.g., AB42 and HLA class Il histocompatibility antigen, DR alpha
chain) were dysregulated in the early stage and then stabilized (group
B). Twelve proteins (e.g., neurofilament triplet protein, heavy subunit
[NfH] and POSTN) were specifically dysregulated in the established
stage of AB accumulation (group C), while 67 proteins (e.g.,, CCL24
and CX3CL1) were dysregulated only in the early stage (group D).
Finally, 1 protein, chitinase-3-like protein 1 (CHI3L1), was downregu-

lated in the early stage but upregulated in the established stage (group
E). Notably, examination of the associations between these five blood
protein groups and brain structural changes revealed distinct patterns
(Figure S9 in supporting information). Group A and C proteins were
most strongly associated with global brain region changes, corrobo-
rating their continuous roles in disease progression. In comparison,
group B and D proteins were more strongly associated with brain
regions that exhibit atrophy in the early stages of AD, including the

hippocampus and middle temporal gyrus,*! which is also consistent
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with their dysregulation in the early stage of AS deposition. Hence, our
blood proteome profiling by NULISAseq identified novel blood protein
biomarkers associated with brain amyloid accumulation with distinct,
stage-specific dysregulation patterns.

3.3 | Linear and non-linear proteomic dynamics
along AB accumulation

Given the complex patterns of blood proteomic dysregulation in AD, to
understand the dynamics of plasma protein alterations during AS accu-
mulation, we examined the trajectories of blood protein level changes
with increasing CL value and further performed hierarchical cluster-
ing analysis (Figure 3A). Most proteins (i.e., 268 proteins in clusters
2 and 3) exhibited a monotonic linear change across the AD contin-
uum. Meanwhile, 57 proteins in clusters 1 and 4 followed U-shaped
or inverted U-shaped trajectories with increasing A accumulation,
suggesting a non-linear association with Ag pathology.

Therefore, to systematically identify blood proteins that exhibit a
linear or non-linear dysregulation pattern, we performed linear regres-
sion analysis and generalized additive method analysis, respectively. As
a result, we identified 27 proteins correlated with AB pathology in a
linear manner (p < 0.05; Figure 3B and Table S7 in supporting infor-
mation) and 23 proteins correlated with AB pathology in a non-linear
manner (Edf > 2, p < 0.05; Figures 3C, S10; Table S8 in supporting infor-
mation). Among them, 7 proteins exhibited both linear and non-linear
characteristics.

To understand the biological meanings of these Ap-associated
plasma proteins, we performed co-regulation network analysis. The
results yielded five different protein clusters with distinct co-
regulation patterns and biological roles (Figure 3D). Protein cluster
1 contained ATN(I) biomarkers (i.e., p-tau217, p-tau231, p-taul81,
microtubule associated protein tau [MAPT], and GFAP) and exhibited
continuous upregulation throughout AB accumulation. Protein cluster
2, associated with synaptic transmission (e.g., CHI3L1, NfH, and acetyl-
cholinesterase), and cluster 5, associated with leukocyte migration
(e.g., fibroblast growth factor 21, CCL19, and C-reactive protein), also
exhibited consistent up- and downregulation, respectively, plateauing
at the late stage of AS pathology. In contrast, protein clusters 3 and
4 exhibited non-linear associations with Ag pathology: at the initial
stage of A accumulation, proteins involved in the extracellular matrix
(e.g., enolase 2 [ENO2], fms related receptor tyrosine kinase 3 lig-
and [FLT3LG], and ubiquitin C-terminal hydrolase L1 [UCHL1]) were
downregulated while cytokine signaling proteins (e.g., CCL23, CCL14,
and interleukin 18 binding protein) were upregulated; their regulation
patterns reversed at the later stage of AB pathology. Together, these
results reveal dynamic proteomic dysregulation during the progres-
sion of AB pathology, highlighting distinct dysregulation patterns and
biological functions.

To investigate whether the plasma AB-associated proteins exhibit
similar changes linked to AS pathology in the brain, we first exam-
ined whether these Ap-associated proteins identified in plasma are

also present as AB-associated proteins in the brains of AD patients.?®
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Specifically, we examined the 27 plasma proteins that were linearly cor-
related with CL values for their association with A3 plaque mean den-
sity in patients’ brains. Seven proteins (i.e., AGRN, galectin 9 [LGALS9],
SMOC1, CHI3L1, vascular cell adhesion molecule 1 (VCAM1), MAPT,
and GFAP) were significantly associated with brain Ag pathology (Table
S9 in supporting information). Four of them (i.e, CHI3L1, VCAM1,
MAPT, and GFAP) exhibited concordant changes between plasma and
the brain, being positively correlated with Ag plaque levels. In con-
trast, three proteins (i.e., AGRN, LGALS9, SMOC1) showed discordant
changes between plasma and the brain, with their levels increas-
ing in the brain but decreasing in plasma, being associated with A3
plaque pathology (Figure S11 in supporting information). Furthermore,
we examined the overlap between 23 plasma proteins non-linearly
correlated with CL values and brain plague mean density-associated
proteins. Five proteins (i.e.,, CHI3L1, ENO2, GFAP, IL16, and UCHL1)
were identified in both plasma and the brain (Table S9). Collectively,
these findings suggest that specific plasma AgB-associated proteins
share brain proteomic signatures correlated with AB plaque pathology,

highlighting potential molecular components of disease progression.

3.4 | Prediction of continuous A accumulation
using an eight-protein biomarker panel developed by
machine learning

Given the identification of novel blood protein biomarkers associated
with different stages of Af pathology, we investigated their poten-
tial for predicting continuous Af accumulation. Accordingly, we used
a machine learning-based model, the LASSO model, to select protein
candidates with the best predictive capabilities (Figure 4A). Through
100 iterations of randomly sampled data from 75% of the partici-
pants in our cohort, eight blood proteins, including p-tau217, p-tau231,
POSTN, SMOC1, and KLKé6 from the CNS 120 panel as well as CD4,
NTF3, and PGF from the Inflammation 250 panel, were consistently
selected by the model at least 75 times (Figure 4B). Among these
eight proteins, p-tau217, p-tau231, NTF3, and PGF were positively
associated with AB pathology, while CD4, POSTN, SMOC1, and KLKé6
were negatively associated (Figure 4C). Specifically, p-tau217 and p-
tau231 levels increased consistently across the AD continuum, while
NTF3 and PGF levels were primarily elevated in the later stages
(Figure 4D). In contrast, POSTN and KLKé levels declined as AB
accumulated, while CD4 and SMOC1 levels showed more complex tra-
jectories, being upregulated in the early stage of disease progression
but downregulated in the later stage (Figure 4D).

Next, we evaluated the performance of machine learning-based
models that included the eight abovementioned blood proteins
together with age and sex as covariates for predicting Ag pathology. We
tested five types of machine learning models: RF, XGB, SVM, LASSO,
and the GLM. The SVM-derived model showed the highest predic-
tive accuracy and robustness in both the training dataset (r = 0.86,
p < 2.2 x 10716, root mean square error [RMSE] = 19.89) and test-
ing dataset (r = 0.89, p < 2.2 x 10716, RMSE = 12.69; Figure 4E and
Table S10 in supporting information). Compared to the SVM-derived
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(A) Trajectory of protein levels across progressive AB pathology
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FIGURE 3 Plasma protein trajectories along continuous progression of A pathology. A, Trajectory of protein alterations alongside A3
accumulation. Left panel: Heatmap showing estimated protein level trajectories along increasing Ag PET CL values, adjusted by age, sex, APOE ¢4
genotype dose, and years of education. Each line represents a distinct protein. Colors indicate the estimated protein level, with blue and red
representing below- and above-average levels, respectively. Right panel: LOESS plots show protein trajectories within each cluster. B, C, Volcano
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model, the RF- and XGB-derived models achieved higher accuracy in
the training dataset (rgp = 0.96, rygg = 0.97, both p < 2.2 x 1016)
but lower accuracy in the testing dataset (rgp = 0.81, rygg = 0.81,
both p < 2.2 x 1071%), suggesting a high risk of overfitting. There-
fore, we selected the SVM-derived model (“CL predictor” hereafter)
for further analysis. For predicting AS pathology, the CL predictor sig-
nificantly outperformed each individual protein, including p-tau217
(r=077,p < 22 x 1071), p-tau231 (r = 0.65, p < 2.2 x 1071¢),
and CD3 (r = 0.43, p < 0.05; Figure 4F and Table S11 in supporting
information). To further investigate the predictive contribution of each
protein in the CL predictor, we performed SHAP value analysis. Over-
all, p-tau217 (mean[|SHAP value|] = 16.18) and p-tau231 (mean[|SHAP
value|] = 14.08) contributed most to the prediction outcome of the
CL predictor. The remaining six proteins exhibited smaller influences
(mean[|SHAP value|]: CD4 = 3.51, KLKé = 3.38, SMOC1 = 3.09,
POSTN = 3.04, NTF3 = 2.73, and PGF = 2.14; Figure S12 in support-
ing information). We further conducted a detailed per-sample analysis
of feature contributions and interactions, revealing that these six pro-
teins had high SHAP values in the prediction of certain samples and
contributed to improved prediction precision. These findings suggest
that although these proteins have limited overall importance across the
dataset, they play acritical role in accurately predicting individual cases

(Figures 4G, S13 in supporting information).

3.5 | Classification of early Ag pathology by the
eight-protein CL predictor

As mentioned above, existing blood ATN biomarkers lack sufficient
accuracy for classifying the early stage of AB pathology (maxi-
mum AUC = 0.81 for AG'™ vs. ABW; Figure 1F). Given that the
eight-protein CL predictor predicted continuous AS accumulation
better than the traditional blood ATN biomarkers, we investigated
whether this panel also enhances the detection and staging of AS
pathology. While both the eight-protein CL predictor and p-tau217
showed high accuracy for detecting established AS pathology
(AUCcL predictor = 0.99 and AUC, 15217 = 0.97 for ApHish ys, Aglow,
Figure S14 in supporting information), the eight-protein CL predic-
tor classified the early stage of AB pathology more accurately than
p-tau217 or p-tau231 (AUCcy predictor = 0.93, AUCp ta217 = 0.78,

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

and AUCp.ap31 = 079 for ABM vs. ABYW; Figure 4H). The
eight-protein CL predictor also showed higher sensitivity and
specificity (sensitivityc( predictor = 0.99, sensitivityp taup17 = 0.78,
sensitivitypraupzr = 091,  specificityc predictor =  0.84,
specificityp.-tau217 = 0.76, specificity,.tayp17 = 0.67 for ARt vs. AgLOW),
Furthermore, the eight-protein CL predictor outperformed p-tau217
in differentiating the early and established stages of A3 pathology
(AUCcy predictor = 0.89, AUC 154217 = 0.83, and AUC,,.15231 = 0.82 for
AB"t vs. AgHigh: Figure 41), suggesting that the panel is better suited
for staging AB pathology. In addition, to validate the specificity of the
eight-protein CL predictor and p-tau217 for detecting Aj pathology,
we assessed their performance in a small cohort of 12 patients with
ABTAD and 12 with A~ non-AD dementia. Consistently, both the
eight-protein CL predictor and p-tau217 showed comparably high
performance in differentiating patients with Ag* from those with A~
non-AD dementia (AUC¢| predictor = 0.996 and AUC, 5217 = 0.987
for AB* AD vs. AB~ non-AD dementia; Figure 4J). Thus, our results
demonstrate that the eight-protein CL predictor not only accurately
predicts continuous AB accumulation, but is also more accurate for

detecting early A3 pathology than traditional blood ATN biomarkers.

4 | DISCUSSION

Given the emergence of blood-based biomarkers as promising tools
for diagnosing and managing AD, it is crucial to develop assays to
accurately quantify AB pathology. In this study, we comprehensively
profiled the plasma proteome of individuals with varying degrees
of AB pathology and identified 43 proteins significantly linearly or
non-linearly correlated with Ag levels. Notably, these AB-associated
proteins exhibit unique dysregulation patterns as AS pathology pro-
gresses and are involved in distinct biological processes, such as innate
immunity, adaptive immunity, and angiogenesis. These findings suggest
that the plasma proteome undergoes dynamic alterations through-
out AB accumulation, indicating that evaluating proteins with distinct
trajectories is a potential strategy for accurately quantifying AS lev-
els. Based on these insights, we used machine learning methods to
select a panel of eight proteins with unique dysregulation patterns. We
constructed a model termed the CL predictor, which predicts CL val-

ues more accurately than plasma p-tau217 or p-tau231 (r = 0.89 vs.

plots illustrating the (B) linear and (C) non-linear correlations between protein levels and CL values. B, Volcano plot illustrating the linear
correlation between protein level and CL values. The analysis was adjusted by age, sex, APOE ¢4 genotype dose, and years of education. Blue and
red dots represent down- and upregulated proteins, respectively. C, Volcano plot showing the non-linear correlations between protein levels and
CL values. Dot color intensity is proportional to Edf. D, Biological processes related to the AS pathology-associated proteins. Upper panel:
Heatmap displaying pairwise correlations among plasma proteins correlated with A accumulation. Each row and column represents one protein,
with color intensity indicating the strength and direction of correlation. Lower panel: LOESS plots show the representative trajectories within each
cluster. In volcano plots, dot size is proportional to the p value (in —log4q scale), the gray dashed line indicates the uncorrected p value threshold,
and the red dashed line indicates the FDR-corrected threshold. Proteins with an FDR < 0.05 are shown in bold text. In the LOESS plots, each gray
line represents a distinct protein, and the blue line represents the representative trajectories defined by the median value within each cluster, with
the 0.25 and 0.75 quantile intervals shown in light blue. A, amyloid beta; APOE, apolipoprotein E; CL, Centiloid; CNS, central nervous system;
ECM, extracellular matrix; Edf, effective degrees of freedom; FDR, false discovery rate; LOESS, locally estimated scatterplot smoothing; PET,

positron emission tomography.
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FIGURE 4 Machine learning-based modeling of a plasma protein panel for predicting Ag pathology on a continuous scale. A, Study workflow.
B, Bar plot depicting the selection frequency for identifying the most informative proteins across iterations by bootstrapping and the LASSO
regression model. Proteins consistently selected in > 75% of bootstrap samples (i.e., eight proteins) constitute the A3 pathology prediction panel
(termed the “CL predictor”). C, Violin plot showing the distribution of bootstrap-derived coefficients for candidate proteins, reflecting their
relative importance in model selection. D, LOESS plot showing the trajectories of proteins in the CL predictor against A PET CL values. The first
and second dashed lines correspond to early AB pathology (CL = 10) and established AB pathology (CL = 30), respectively. E, Correlations between
actual AB PET CL values and predicted values by the CL predictor were evaluated separately in the training dataset (r = 0.86, p < 2.2x 10~16) and
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rotau217 = 0.77, rp.tauz31 = 0.74, respectively). Furthermore, the CL
predictor is more sensitive in identifying individuals with early Ag accu-
mulation (AUC = 0.93 vs. AUC,.t5,217 = 0.78, AUC, tau231 = 0.79,
respectively), facilitating the identification of high-risk populations.
Collectively, these findings highlight the potential of blood-based
biomarkers for the early detection, precise staging, and efficacy mon-
itoring of AB pathology, offering a promising tool for clinical practice
and trials of AB-targeting therapeutic strategies.

Quantifying A8 PET using the CL scale is a robust and widely
used approach for quantifying A8 pathology.*° The CL scale supports
identification of individuals eligible for anti-Ag therapy, monitoring of
reductions in AB deposition after treatment, and decisions on thera-
peutic endpoints.*? Identifying plasma protein biomarkers associated
with CL values could be a more cost effective and accessible alterna-
tive to AB PET. In this study, we show that the plasma proteome exhibits
stage-dependent alterations during Ag accumulation (Figures 2C, S5;
Table Sé). Alongside well-known biomarkers (e.g., p-tau217), adap-
tive immunity-related proteins, including IL-17B (interleukin-17B)*3
and IL-7 (interleukin-7),** are monotonically associated with brain
AB accumulation. This is consistent with findings that stronger adap-
tive immune responses are correlated with greater AD severity.*
Importantly, we found some proteins that exhibit stage-specific dysreg-
ulation. For example, among individuals with established Aj pathology,
proteins linked to neuronal integrity (e.g., NfL*¢) and vascular func-
tion (e.g., VCAM1%’) are specifically dysregulated, which is consistent
with evidence that axonal degeneration and cerebrovascular dysfunc-
tion become more prominent in the later stages of AD. Interestingly,
innate immunity-related proteins, such as TNFSF14 (TNF superfam-
ily member 14)*° and CX3CL1 (C-X3-C motif chemokine ligand 1),%8
are specifically dysregulated in the early stage. Previous investiga-
tions of the plasma levels of these innate immune mediators in AD
and healthy individuals have yielded conflicting results as to whether
and to what extent dysregulation occurs.*~>1 Our results may suggest
that their levels follow a non-linear trajectory across AD progres-
sion, exhibiting early dysregulation followed by reversal. Concordant
with previous studies,®2°% these stage-dependent alterations sup-
port that systemic proteomic changes—not limited to pathological
biomarkers—are strongly associated with the advancement of AjB
pathology. Interestingly, our analysis reveals several proteins asso-

ciated with AB plaques in both plasma and the brain. Among them,

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

proteins related to inflammatory response (e.g., CHI3L1) showed con-
cordant relationships between plasma and the brain, whereas those
related to nervous system development (e.g., AGRN) exhibited discor-
dant relationships. These results suggest that the relationship between
plasma and brain protein levels may vary during the progression of
AB pathology depending on specific pathways. Understanding these
compartment-specific protein dynamics may help uncover the biology
of AB pathology.

While blood biomarkers are promising diagnostic tools for AS
pathology,®* they are not yet clinically implemented for biological
staging. By itself, the leading candidate, p-tau217, is not effective for
staging given its insufficient AUC in differentiating Ag'™ and AgHieh
individuals. This may be because the plasma levels of these biomark-
ers change significantly during early pathogenesis but then level off as
AB continues to accumulate.%°5-37 Thus, although these biomarkers
canindicate positivity or negativity of A pathology, they are not reflec-
tive of the cumulative amount of AB. In the latest AD framework,13 the
National Institute on Aging-Alzheimer’s Association (NIA-AA) Work-
ing Group outlines a conceptual fluid-only staging scheme that is based
on the sequence of abnormal biomarker emergence, starting with
p-tau (i.e., p-tau181, p-tau217, or p-tau231), followed by p-tau205,
then MTBR-tau243, and finally non-phosphorylated mid-domain tau
fragments. This highlights the potential of combining biomarkers with
distinct temporal dynamics for staging. Accordingly, we harnessed
advanced machine learning techniques to capture interaction patterns
and non-linear relationships among blood proteins. This yielded an
eight-protein panel, termed the CL predictor, comprising p-tau217,
p-tau231, CD4, NTF3, PGF, SMOC1, KLK6, and POSTN. Each of these
proteins has been reported to be associated with AD through distinct
pathological pathways: p-tau217 and p-tau231 indicate pathologi-
cal progression; CD4 denotes immune-cell regulation®®; NTF3 pro-
motes neuronal survival®?; PGF drives angiogenesis®?; and SMOC1,12
KLK6,6 and POSTN®? coordinate extracellular matrix remodeling and
leukocyte migration.

By integrating these blood proteins, the CL predictor improves
the precision of blood-based AB pathology quantification. Its output
is more strongly correlated with CL values than its individual con-
stituent biomarker proteins. Notably, the CL predictor better detects
intermediate-range AB pathology (i.e, CL 10-30) than individual

biomarkers. This range, linked to an elevated risk of cognitive decline,

test dataset (r= 0.89, p < 2.2x 10~1¢). The linear regression line with 95% confidence intervals, Spearman correlation coefficients (r), and p values
are shown. F, Bar plot comparing the prediction accuracy of the CL predictor and its individual protein components. Spearman correlation
coefficients (r) and p values are only shown for proteins exhibiting a significant correlation (i.e., p < 0.05). G, Beeswarm plot showing the SHAP
value of each feature in each sample. Color indicates the value of the feature. H-J, ROC curves comparing the classification performance of the CL
predictor and p-tau217 for distinguishing (H) individuals in the Aﬁ'”t group from those in the Aﬁ'—o"" group as well as (1) individuals in the Aﬁ'”t group
from those in the ABHig" group. H, Classification of the A"t versus AW groups (CL predictor AUC = 0.93, p-tau217 AUC = 0.78, p-tau231

AUC =0.79). 1, Classification of the Aﬁ'”t versus Aﬁ“igh groups (CL predictor AUC = 0.89, p-tau217 AUC = 0.83, p-tau231 AUC = 0.82). J, ROC
curves comparing the classification performance of the CL predictor and p-tau217 for distinguishing individuals with clinically diagnosed AD or
non-AD dementia (CL predictor AUC = 0.996, p-tau217 AUC = 0.987). *p < 0.05, **p < 0.001. AB, amyloid beta; AD, Alzheimer’s disease; AUC,
area under the receiver operating characteristic curve; CL, Centiloid; CNS, central nervous system; GLM, generalized linear model; LASSO, |least
absolute shrinkage and selection operator; LOESS, locally estimated scatterplot smoothing; PET, positron emission tomography; p-tau,
phosphorylated tau; RF, random forest; ROC, receiver operating characteristic; SHAP, SHapley Additive exPlanations; SVM, support vector

machine; XGB, XGBoost.
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is a critical inflection point in AD progression and represents a window
for therapeutic intervention.*2 With high accuracy and accessibility,
the CL predictor could broaden the use of blood-based biomarkers in
clinical practice, supporting both early diagnosis and effective patient
management. Specifically, it can expand the scale of screening to enrich
clinical cohorts, particularly for early prevention studies such as the
AHEAD study.®® For patients, the CL predictor would facilitate an
increased frequency of testing to track A3 accumulation, assess pro-
gression risk, and guide eligibility for anti-Ag therapies. Moreover,
the CL predictor could serve as a pharmacodynamic indicator that
precisely indicates the change in AB pathology after treatment to
inform clinical decisions. Hence, the CL predictor provides a prac-
tical blood-based quantitative assessment of AS pathology and has
the potential to enhance early diagnosis, clinical management, and
therapeutic development for AD.

Advances in quantitative protein profiling have generated abun-
dant molecular fluid datasets, and machine learning is increasingly
important for translating these datasets into clinical applications, espe-
cially in biomarker discovery.?® Machine learning has been applied
to identify candidate biomarkers for AD,%* Parkinson’s disease,®”
and Huntington’s disease.®® In our analysis, LASSO regression with
repeated random resampling and cross-validation reduced 325 protein
candidates to a small and highly informative feature set. Bootstrap-
ping, only retaining features present in > 75% of runs, enhanced the
stability and reproducibility of predictors identified by LASSO regres-
sion. Cross-validation®” further provided unbiased performance esti-
mates, mitigating overfitting. Together, these complementary strate-
gies enhanced the robustness of feature selection. After these steps,
we divided the data into training (75%) and test (25%) datasets to con-
struct and compare five models: LASSO regression, GLM, RF, SVM,
and XGB. The SVM model outperformed the others in predicting CL
values and showed comparable performance in the training and test
datasets, demonstrating good generalization. This may be attributable
to its capacity to manage high-dimensional data and model com-
plex, non-linear relationships via kernel functions while maintaining
strong generalization through margin-based regularization.2¢8 This
balanced strategy appears to be suitable for the sample size and fea-
ture space of our dataset. In contrast, the predictive accuracy of the
ensemble tree methods, RF and XGB, was markedly lower on the
test dataset than on the training dataset. This may suggest that these
models overfit the training data,®” therefore resulting in diminished
performance when applied to unseen data. In addition, the LASSO
regression and GLM models performed consistently but less accurately
than the SVM model, likely because of their limited capacity to capture
non-linear relationships.”® Taken together, considering its high predic-
tive accuracy and generalization, we demonstrate that the SVM model
is feasible for integrating multiple protein biomarkers to accurately
indicate disease status.

Further validation and optimization will promote the clinical transla-
tion of the CL predictor. While our analysis demonstrates associations
between protein levels and A accumulation, further longitudinal study

will help validate the temporal evolution of these proteins. In addi-

tion, the robustness of the CL predictor, particularly for individuals
in the intermediate range of A accumulation, may be constrained
by the limited sample size. Therefore, validation in larger cohorts is
essential to enable the clinical translation of our model. Furthermore,
in addition to AB pathology, recently published AD staging criteria
highlight the importance of assessing the location and extent of brain
tau accumulation (i.e., AB* tau,™, AB* tauomm™, ABT tausmop™, and
AB* tauyygnt).1° Future investigations of blood biomarkers for both
AB and tau pathology will provide insights for more comprehensive
blood-based staging of AD.

In summary, we comprehensively profiled the plasma proteome
dynamics during A accumulation, identified novel proteins associated
with AB accumulation, and developed a high-performance, eight-
protein panel for accurately quantifying AS pathology. Our findings
demonstrate the feasibility of integrating multiple plasma proteins to
improve the linear correlation between blood-based biomarkers and
cerebral AB pathology, thereby facilitating the early diagnosis, staging,
and prognosis of AD. Furthermore, our study provides crucial insights
for patient selection and management in clinical practice and trials, par-
ticularly for emerging AB-targeting therapies, thereby paving the way

for advanced AD diagnostics and therapeutics.

AUTHOR CONTRIBUTIONS

W.Z., Y.J., AKY.F, and N.Y.I. conceived of the study; HYW.,, EY.L.C,,
BWYW., RMN.L, SKL, FCl, WMW, CK.S., HMW, JKYY., Y.FS,
V.CT.M,, and T.C.Y.K. organized patient recruitment and sample collec-
tion; W.Z,, Y.J., LKW.C., and E.Y.L.C. performed the experiments; W.Z.
and Y.J. set up the data-processing pipelines; W.Z., Y.J., WWW.,, HYW,,
LKW.C, FC.., KY.M, AH., JH., HZ, AKY.F, and N.Y.l. analyzed the
data; and W.Z,, Y.J.,, AKY.F, and N.Y.l. wrote the manuscript with input
from all authors.

ACKNOWLEDGMENTS

The authors would like to express their sincerest gratitude to the
participants from the Hong Kong Chinese cohort, along with their rel-
atives, at the Prince of Wales Hospital of the Chinese University of
Hong Kong (CUHK-PWH), Queen Mary Hospital (QMH), United Chris-
tian Hospital (UCH), and Tuen Mun Hospital (TMH), without whom
this research would have not been possible. The authors also thank
Patrick Ka Chun Chiu (QMH), Dr. Ka Keung Yam (QMH), Dr. Edmond
Kwok Yiu Sha (UCH), Dr. Ting Kwan Yim (UCH), Dr. Sze Yuen Fung
(UCH), Dr. Ping Cheong Ho (UCH), Dr. Kathy Ka Ling Wong (UCH), Dr.
Iki Hoi Ki Chan (UCH), Yuen Yee Tam (UCH), Mei Ling Lau (UCH), Ka
Shing Ho (TMH), Tung Yi Fu (TMH), Hiu Ki Yam (TMH), and Chung Ho
Chan (TMH) for coordinating the collection of clinical samples and data.
Y.J. is a recipient of the Hong Kong Postdoctoral Fellowship Award
from the Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (Project No. HKUST PDFS2324-6504). H.Z. is
a Wallenberg Scholar and a Distinguished Professor at the Swedish
Research Council supported by grants from the Swedish Research
Council (#2023-00356, #2022-01018, and #2019-02397), the Euro-

pean Union’s Horizon Europe Research and Innovation Programme

85UB01 7 SUOWILLIOD AIIERID B|cedl [dde 8y} Aq peue0b 812 Sao1Me YO 8SN JO S9INJ I0j AT aUIIUQ AB]IM UO (SUOTHPUOD-PUR-SWLBIAL0D" A 1M Ale.d 1 jBul Uo//Sciy) SUONIPUOD pue SWLB | 84} 885 *[9202/20/20] Uo Akeiqiauliuo A8|im *JO Aisieniun Buoyl BuoH Aq 6.TTZ Z[e/200T 0T/10p/L0d Ao | AReiqpuljuo S uINo -z [e//sdiy WOl pepeojumoq ‘Z ‘9202 ‘6.25255T



ZHENGET AL.

Alzheimer’s &Dementia® | isor1r

under grant agreement No. 101053962, Swedish State Support for
Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discov-
ery Foundation (ADDF), USA (#201809-2016862), the AD Strategic
Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-
21-831381-C, #ADSF-21-831377-C, and #ADSF-24-1284328-C), the
European Partnership on Metrology co-financed by the European
Union’s Horizon Europe Research and Innovation Programme and
the Participating States (NEuroBioStand, #22HLTOQ7), the Bluefield
Project, Cure Alzheimer’s Fund, the Olav Thon Foundation, the Erling-
Persson Family Foundation, Familjen Ronstroms Stiftelse, Familjen
Beiglers Stiftelse, Stiftelsen fér Gamla Tjdnarinnor, Hjarnfonden, Swe-
den (#F02022-0270), the European Union’s Horizon 2020 Research
and Innovation Programme under the Marie Sktodowska-Curie grant
agreement No. 860197 (MIRIADE), the European Union Joint Pro-
gramme - Neurodegenerative Disease Research (JPND2021-00694),
the National Institute for Health and Care Research University Col-
lege London Hospitals Biomedical Research Centre, the UK Dementia
Research Institute at UCL (UKDRI-1003), and an anonymous donor.

This study was supported in part by the Research Grants Council
of Hong Kong (the Collaborative Research Fund [C6027-19GF],
the Theme-Based Research Scheme [T13-605/18 W], and the Gen-
eral Research Fund [HKUST16103122, HKUST16104624, and
HKUST16102824]), the Areas of Excellence Scheme of the University
Grants Committee (AoE/M-604/16), the InnoHK initiative of the
Innovation and Technology Commission of the Hong Kong Special
Administrative Region Government (ITCPD/17-9), the SIAT-HKUST
Joint Laboratory for Brain Science (Joint Laboratory Funding Scheme
[JLFS/M-604/24]), and the Guangdong-Hong Kong Joint Laboratory
for Psychiatric Disorders (2023B1212120004).

CONFLICT OF INTEREST STATEMENT

Y.J., FCl, AKY.F, and NY.l. are inventors of related technology
licensed to Cognitact. Y.J. and F.C.I. are co-founders of Cognitact. J.H.
has served as a consultant for Eli Lilly and Eisai. H.Z. has served on
scientific advisory boards and/or as a consultant for Abbvie, Acumen,
Alector, Alzinova, ALZpath, Amylyx, Annexon, Apellis, Artery Ther-
apeutics, AZTherapies, Cognito Therapeutics, CogRx, Denali, Eisai,
Enigma, LabCorp, Merck Sharp & Dohme, Merry Life, Nervgen, Novo
Nordisk, Optoceutics, Passage Bio, Pinteon Therapeutics, Prothena,
Quanterix, Red Abbey Labs, reMYND, Roche, Samumed, ScandiBio
Therapeutics AB, Siemens Healthineers, Triplet Therapeutics, and
Wave; has given lectures sponsored by Alzecure, BioArctic, Biogen,
Cellectricon, Fujirebio, LabCorp, Lilly, Novo Nordisk, Oy Medix Bio-
chemica AB, Roche, and WebMD; is a co-founder of Brain Biomarker
Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures
Incubator Program; and is a shareholder of MicThera (outside submit-
ted work). All other authors declare no conflicts of interest. Author

disclosures are available in the supporting information.

DATA AVAILABILITY STATEMENT

All statistical data associated with this study are contained in the main
text or supporting information. The consent forms signed by partic-
ipants from the Hong Kong Chinese cohort state that the research

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

content will be kept private under the supervision of the hospital and
research team. Therefore, the phenotypic and proteomic data of indi-
vidual participants will only be available and shared in the context of a
formal collaboration. A review panel hosted at the Hong Kong Univer-
sity of Science and Technology will process and review any applications
for data sharing and project collaboration, and promptly notify appli-
cants of their decision. Researchers may contact skineurosci@ust.hk
for details about data sharing and project collaboration related to the

present study.
ORCID
Nancy Y. Ip & https://orcid.org/0000-0002-2763-8907

REFERENCES

1. Duyckaerts C, Delatour B, Potier M-C. Classification and basic pathol-
ogy of Alzheimer disease. Acta Neuropathol. 2009;118(1):5-36. doi: 10.
1007/s00401-009-0532-1

2. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of
dementia due to Alzheimer’s disease: Recommendations from the
National Institute on Aging-Alzheimer’s Association workgroups on
diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement.
2011;7(3):263-269.d0i:10.1016/j.jalz.2011.03.005

3. lkonomovic MD, Buckley CJ, Heurling K, et al. Post-mortem
histopathology underlying p-amyloid PET imaging following
flutemetamol F 18 injection. Acta Neuropathol Commun. 2016;4(1):130.
doi:10.1186/s40478-016-0399-z

4. CollijLE,Bollack A, La Joie R, et al. Centiloid recommendations for clin-
ical context-of-use from the AMYPAD consortium. Alzheimer’s Dement.
2024;20(12):9037-9048. doi:10.1002/alz.14336

5. laccarino L, Burnham SC, Tunali I, et al. A practical overview of the
use of amyloid-PET Centiloid values in clinical trials and research.
Neurolmage: Clin. 2025;46:103765. d0i:10.1016/j.nicl.2025.103765

6. Cummings JL. Maximizing the benefit and managing the risk of anti-
amyloid monoclonal antibody therapy for Alzheimer’s disease: Strate-
gies and research directions. Neurotherapeutics. 2025;22(3):e00570.
doi:10.1016/j.neurot.2025.e00570

7. Nakamura A, Kaneko N, Villemagne VL, et al. High performance
plasma amyloid-8 biomarkers for Alzheimer’s disease. Nature.
2018;554(7691):249-254. doi:10.1038/nature25456

8. Jack Jr CR, Bennett DA, Blennow K, et al. NIA-AA Research Frame-
work: Toward a biological definition of Alzheimer’s disease. Alzheimer’s
Dement. 2018;14(4):535-562. doi:10.1016/j.jalz.2018.02.018

9. Palmqvist S, Warmenhoven N, Anastasi F, et al. Plasma phospho-
tau217 for Alzheimer’s disease diagnosis in primary and secondary
care using a fully automated platform. Nat Med. 2025;31(6):2036-
2043.d0i:10.1038/541591-025-03622-w

10. Mila-Aloma M, Ashton NJ, Shekari M, et al. Plasma p-tau231 and
p-tau217 as state markers of amyloid-8 pathology in preclinical
Alzheimer’s disease. Nat Med. 2022;28(9):1797-1801. doi:10.1038/
s41591-022-01925-w

11. Montoliu-Gaya L, Benedet AL, Tissot C, et al. Mass spectrometric
simultaneous quantification of tau species in plasma shows differ-
ential associations with amyloid and tau pathologies. Nat Aging.
2023;3(6):661-669.doi:10.1038/543587-023-00405- 1

12. Pichet Binette A, Gaiteri C, Wennstrom M, et al. Proteomic changes
in Alzheimer’s disease associated with progressive AB plaque and
tau tangle pathologies. Nat Neurosci. 2024;27(10):1880-1891. doi: 10.
1038/s41593-024-01737-w

13. Jack Jr CR, Andrews JS, Beach TG, et al. Revised criteria for diagnosis
and staging of Alzheimer’s disease: Alzheimer’s Association Work-
group. Alzheimer’s Dement. 2024;20(8):5143-5169. doi:10.1002/alz.
13859

85UB01 7 SUOWILLIOD AIIERID B|cedl [dde 8y} Aq peue0b 812 Sao1Me YO 8SN JO S9INJ I0j AT aUIIUQ AB]IM UO (SUOTHPUOD-PUR-SWLBIAL0D" A 1M Ale.d 1 jBul Uo//Sciy) SUONIPUOD pue SWLB | 84} 885 *[9202/20/20] Uo Akeiqiauliuo A8|im *JO Aisieniun Buoyl BuoH Aq 6.TTZ Z[e/200T 0T/10p/L0d Ao | AReiqpuljuo S uINo -z [e//sdiy WOl pepeojumoq ‘Z ‘9202 ‘6.25255T


mailto:sklneurosci@ust.hk
https://orcid.org/0000-0002-2763-8907
https://orcid.org/0000-0002-2763-8907
https://doi.org/10.1007/s00401-009-0532-1
https://doi.org/10.1007/s00401-009-0532-1
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1186/s40478-016-0399-z
https://doi.org/10.1002/alz.14336
https://doi.org/10.1016/j.nicl.2025.103765
https://doi.org/10.1016/j.neurot.2025.e00570
https://doi.org/10.1038/nature25456
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1038/s41591-025-03622-w
https://doi.org/10.1038/s41591-022-01925-w
https://doi.org/10.1038/s41591-022-01925-w
https://doi.org/10.1038/s43587-023-00405-1
https://doi.org/10.1038/s41593-024-01737-w
https://doi.org/10.1038/s41593-024-01737-w
https://doi.org/10.1002/alz.13859
https://doi.org/10.1002/alz.13859

woir | Alzheimer’s & Dementia’

14.

15.

16.

17.
18.
19.
20.
21.
22.

23.
24,
25.

26.

27.
28.

29.
30.
31

32.

33.

ZHENGET AL.

THE JOURNAL OF THE ALZHEIMER’S ASSOCIATION

Bucci M, Bluma M, Savitcheva |, et al. Profiling of plasma biomarkers in
the context of memory assessment in a tertiary memory clinic. Transl
Psychiatry. 2023;13(1):268.doi:10.1038/s41398-023-02558-4
Rissman RA, Langford O, Raman R, et al.; Team, for the A. 3-45 S.
Plasma AB42/AB40 and phospho-tau217 concentration ratios increase
the accuracy of amyloid PET classification in preclinical Alzheimer’s
disease. Alzheimer’s Dement. 2024;20(2):1214-1224. doi:10.1002/alz.
13542

Feng W, Beer JC, Hao Q, et al. NULISA: A proteomic liquid biopsy plat-
form with attomolar sensitivity and high multiplexing. Nat Commun.
2023;14(1):7238.d0i:10.1038/s41467-023-42834-x

Di Molfetta G, Pola I, Tan K, et al. Inflammation biomarkers and
Alzheimer’s disease: A pilot study using NULISAseq. Alzheimer’s
Dement: Diagn Assess Dis Monit. 2025;17(1):e70079. doi:10.1002/
dad2.70079

Rea Reyes RE, Wilson RE, Langhough RE, et al. Targeted proteomic
biomarker profiling using NULISA in a cohort enriched with risk
for Alzheimer’s disease and related dementias. Alzheimer’s Dement.
2025;21(5):70166.d0i:10.1002/alz.70166

Zeng X, Sehrawat A, Lafferty TK, et al. Novel plasma biomarkers of
amyloid plaque pathology and cortical thickness: Evaluation of the
NULISA targeted proteomic platform in an ethnically diverse cohort.
Alzheimer’s Dement. 2025;21(2):e14535. doi:10.1002/alz.14535
Swanson K, Wu E, Zhang A, Alizadeh AA, Zou J. From patterns to
patients: Advances in clinical machine learning for cancer diagnosis,
prognosis, and treatment. Cell. 2023;186(8):1772-1791. doi:10.1016/
j.cell.2023.01.035

Nasreddine ZS, Phillips NA, Bédirian V, et al. The montreal cognitive
assessment, MoCA: A brief screening tool for mild cognitive impair-
ment. J Am Geriatr Soc. 2005;53(4):695-699. doi:10.1111/j.1532-
5415.2005.53221.x

Pangman VC, Sloan J, Guse L. An examination of psychometric prop-
erties of the mini-mental state examination and the standardized
mini-mental state examination: Implications for clinical practice. Appl
Nurs Res. 2000;13(4):209-213. doi: 10.1053/apnr.2000.9231

Robin X, Turck N, Hainard A, et al. pPROC: An open-source package for
R and S+ to analyze and compare ROC curves. BMC Bioinf. 2011;12,
p.77.d0i:10.1186/1471-2105-12-77

Davis J, Goadrich M. The relationship between precision-recall and
ROC curves. Proceedings of the 23rd International Conference on Machine
Learning, 2006;233-240.d0i:10.1145/1143844.1143874

Maechler M, Rousseeuw P, Croux C, et al. robustbase: Basic Robust-
Statistics R package version 0.99-6. 2025. https://cran.r-project.org/
web/packages/robustbase/index.html

Wood SN. Fast Stable Restricted Maximum Likelihood and Marginal
Likelihood Estimation of Semiparametric Generalized Linear Models.
J R Stat Soc B: Stat Methodol. 2011;73(1):3-36. doi:10.1111/j.1467-
9868.2010.00749.x

R Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing; 2023. https://www.r-
project.org/

Wang E, Yu K, Cao J, et al. Multiscale proteomic modeling reveals
protein networks driving Alzheimer’s disease pathogenesis. Cell.
2025;188(22):6186-6204. doi: 10.1016/j.cell.2025.08.038

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized
linear models via coordinate descent. J Stat Softw. 2010;33(1):1-22.
Liaw A, Wiener M. Classification and Regression by randomForest. R
News. (n.d.);2(3):18-22. https://CRAN.R-project.org/doc/Rnews/
Chen T, He T, Benesty M, et al. xgboost: Extreme Gradient Boosting.
2025.doi:10.32614/CRAN.package.xgboost

Meyer D, Dimitriadou E, Hornik K, et al. e1071: Misc Functions of
the Department of Statistics, Probability Theory Group (Formerly:
E1071), TU Wien. 2024. doi:10.32614/CRAN.package.e 1071

Mayer M, Watson D, Biecek P. kernelshap: Kernel SHAP (0.9.0). 2025
https://cran.r-project.org/web/packages/kernelshap/index.html

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Mayer M, Stando A. shapviz: SHAP visualizations (0.10.2). 2025
https://cran.r-project.org/web/packages/shapviz/index.html
Ginestet C. ggplot2: Elegant graphics for data analysis. J R Stat
Soc A: Stat Soc. 2011;174(1):245-246.d0i:10.1111/j.1467-985X.2010.
00676_9.x

Kolde R. pheatmap: Pretty heatmaps (1.0.13). 2025 https://cran.r-
project.org/web/packages/pheatmap/index.html

Selma-Gonzalez J, Rubio-Guerra S, Garcia-Castro J, et al. Association
of plasma phosphorylated tau 217 with clinical deterioration across
Alzheimer disease stages. Neurology. 2025;105(1):e213769. doi:10.
1212/WNL.0000000000213769

Wang Y-T, Ashton NJ, Therriault J, et al. Identify biological Alzheimer’s
disease using a novel nucleic acid-linked protein immunoas-
say. Brain Commun. 2025;7(1):fcaf004. doi:10.1093/braincomms/
fcaf0O04

Jiang Y, Zhou X, Ip FC, et al. Large-scale plasma proteomic profiling
identifies a high-performance biomarker panel for Alzheimer’s disease
screening and staging. Alzheimer’s Dement. 2022;18(1):88-102. doi: 10.
1002/alz.12369

Jiang Y, Uhm H, Ip FC, et al. A blood-based multi-pathway biomarker
assay for early detection and staging of Alzheimer’s disease across eth-
nic groups. Alzheimer’s Dement. 2024;20(3):2000-2015. doi:10.1002/
alz.13676

Planche V, Manjon JV, Mansencal B, et al. Structural progression of
Alzheimer’s disease over decades: The MRI staging scheme. Brain
Commun. 2022;4(3):fcac109. doi:10.1093/braincomms/fcac109

Sims JR, Zimmer JA, Evans CD, et al., TRAILBLAZER-ALZ 2
Investigators. Donanemab in Early Symptomatic Alzheimer Dis-
ease: The TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA.
2023;330(6):512-527.d0i:10.1001/jama.2023.13239

Bie Q, Jin C, Zhang B, Dong H. IL-17B: A new area of study in the IL-
17 family. Mol Immunol. 2017;90:50-56. doi:10.1016/j.molimm.2017.
07.004

Barata JT, Durum SK, Seddon B. Flip the coin: iL-7 and IL-7R in
health and disease. Nat Immunol. 2019;20(12):1584-1593. doi:10.
1038/s41590-019-0479-x

Li C, Zhao Q, Feng L, Li M. Emerging roles of adaptive immune
response in Alzheimer’s Disease. Aging Dis. 2024;16(4):2315-2342.
doi:10.14336/AD.2024.0564

Bos I, Vos S, Verhey F, et al. Cerebrospinal fluid biomarkers
of neurodegeneration, synaptic integrity, and astroglial activation
across the clinical Alzheimer’s disease spectrum. Alzheimer’s Dement.
2019;15(5):644-654. doi:10.1016/j.jalz.2019.01.004

Chen J, Dai A-X, Tang H-L, et al. Increase of ALCAM and VCAM-
1 in the plasma predicts the Alzheimer’s disease. Front Immunol.
2023;13:1097409. doi:10.3389/fimmu.2022.1097409

Lee M, Lee Y, Song J, Lee J, Chang S-Y. Tissue-specific role of CX3CR1
expressing immune cells and their relationships with human disease.
Immune Netw. 2018;18(1):e5. doi:10.4110/in.2018.18.e5

de la Monte SM, Tong M, Hapel AJ. Concordant and discordant
cerebrospinal fluid and plasma cytokine and chemokine responses
in mild cognitive impairment and early-stage Alzheimer’s disease.
Biomedicines. 2023;11(9):2394. doi:10.3390/biomedicines11092394
Kim T-S, Lim H-K, Lee JY, et al. Changes in the levels of plasma
soluble fractalkine in patients with mild cognitive impairment and
Alzheimer’s disease. Neurosci Lett. 2008;436(2):196-200. doi:10.1016/
j.neulet.2008.03.019

Motta M, Imbesi R, Di Rosa M, Stivala F, Malaguarnera L. Altered
plasma cytokine levels in Alzheimer’s disease: Correlation with the
disease progression. Immunol Lett. 2007;114(1):46-51. doi:10.1016/j.
imlet.2007.09.002

Eldjarn GH, Ferkingstad E, Lund SH, et al. Large-scale plasma pro-
teomics comparisons through genetics and disease associations.
Nature. 2023;622(7982):348-358. doi:10.1038/541586-023-06563-
X

85UB01 7 SUOWILLIOD AIIERID B|cedl [dde 8y} Aq peue0b 812 Sao1Me YO 8SN JO S9INJ I0j AT aUIIUQ AB]IM UO (SUOTHPUOD-PUR-SWLBIAL0D" A 1M Ale.d 1 jBul Uo//Sciy) SUONIPUOD pue SWLB | 84} 885 *[9202/20/20] Uo Akeiqiauliuo A8|im *JO Aisieniun Buoyl BuoH Aq 6.TTZ Z[e/200T 0T/10p/L0d Ao | AReiqpuljuo S uINo -z [e//sdiy WOl pepeojumoq ‘Z ‘9202 ‘6.25255T


https://doi.org/10.1038/s41398-023-02558-4
https://doi.org/10.1002/alz.13542
https://doi.org/10.1002/alz.13542
https://doi.org/10.1038/s41467-023-42834-x
https://doi.org/10.1002/dad2.70079
https://doi.org/10.1002/dad2.70079
https://doi.org/10.1002/alz.70166
https://doi.org/10.1002/alz.14535
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1053/apnr.2000.9231
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1145/1143844.1143874
https://cran.r-project.org/web/packages/robustbase/index.html
https://cran.r-project.org/web/packages/robustbase/index.html
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1016/j.cell.2025.08.038
https://CRAN.R-project.org/doc/Rnews/
https://cran.r-project.org/web/packages/xgboost/index.html
https://doi.org/10.32614/CRAN.package.e1071
https://cran.r-project.org/web/packages/kernelshap/index.html
https://cran.r-project.org/web/packages/shapviz/index.html
https://doi.org/10.1111/j.1467-985X.2010.00676_9.x
https://doi.org/10.1111/j.1467-985X.2010.00676_9.x
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://doi.org/10.1212/WNL.0000000000213769
https://doi.org/10.1212/WNL.0000000000213769
https://doi.org/10.1093/braincomms/fcaf004
https://doi.org/10.1093/braincomms/fcaf004
https://doi.org/10.1002/alz.12369
https://doi.org/10.1002/alz.12369
https://doi.org/10.1002/alz.13676
https://doi.org/10.1002/alz.13676
https://doi.org/10.1093/braincomms/fcac109
https://doi.org/10.1001/jama.2023.13239
https://doi.org/10.1016/j.molimm.2017.07.004
https://doi.org/10.1016/j.molimm.2017.07.004
https://doi.org/10.1038/s41590-019-0479-x
https://doi.org/10.1038/s41590-019-0479-x
https://doi.org/10.14336/AD.2024.0564
https://doi.org/10.1016/j.jalz.2019.01.004
https://doi.org/10.3389/fimmu.2022.1097409
https://doi.org/10.4110/in.2018.18.e5
https://doi.org/10.3390/biomedicines11092394
https://doi.org/10.1016/j.neulet.2008.03.019
https://doi.org/10.1016/j.neulet.2008.03.019
https://doi.org/10.1016/j.imlet.2007.09.002
https://doi.org/10.1016/j.imlet.2007.09.002
https://doi.org/10.1038/s41586-023-06563-x
https://doi.org/10.1038/s41586-023-06563-x

ZHENGET AL.

Alzheimer’s &Dementia® | 17017

583.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Heo G, Xu Y, Wang E, et al. Large-scale plasma proteomic pro-
filing unveils diagnostic biomarkers and pathways for Alzheimer’s
disease. Nat Aging. 2025;5(6):1114-1131. doi:10.1038/s43587-025-
00872-8

Commissioner, O. of the. FDA Clears First Blood Test Used in Diag-
nosing Alzheimer’s Disease. FDA; 2025. https://www.fda.gov/news-
events/press-announcements/fda-clears-first-blood-test-used-
diagnosing-alzheimers-disease

Mundada NS, Rojas JC, Vandevrede L, et al. Head-to-head com-
parison between plasma p-tau217 and flortaucipir-PET in amyloid-
positive patients with cognitive impairment. Alzheimer’s Res Ther.
2023;15(1):157.d0i:10.1186/s13195-023-01302-w

Teunissen CE, Kolster R, Triana-Baltzer G, Janelidze S, Zetterberg
H, Kolb HC. Plasma p-tau immunoassays in clinical research for
Alzheimer’s disease. Alzheimer’s Dement. 2025;21(1):e14397. doi:10.
1002/alz.14397

Feizpour A, Doecke JD, Doré V, et al. Detection and staging
of Alzheimer’s disease by plasma p-tau217 on a high through-
put immunoassay platform. eBioMedicine. 2024:109:105405. doi:10.
1016/j.ebiom.2024.105405

Rickenbach C,Mallone A, Hausle L, et al. Altered T-cell reactivity in the
early stages of Alzheimer’s disease. Brain. 2025:awaf167.d0i:10.1093/
brain/awaf167

Asadi MR, Gharesouran J, Sabaie H, et al. Neurotrophin growth fac-
tors and their receptors as promising blood biomarkers for Alzheimer’s
Disease: A gene expression analysis study. Mol Biol Rep. 2024;51(1):49.
doi:10.1007/s11033-023-08959-4

Yang H-S, Yau W-YW, Carlyle BC, et al. Plasma VEGFA and PGF impact
longitudinal tau and cognition in preclinical Alzheimer’s disease. Brain.
2024;147(6):2158-2168.d0i:10.1093/brain/awae034

Boumali R, Urli L, Naim M, et al. Kallikrein-related peptidase’s signif-
icance in Alzheimer's disease pathogenesis: A comprehensive survey.
Biochimie. 2024;226:77-90. doi:10.1016/j.biochi.2024.04.001

Park J-C, Jung KS, Kim J, et al. Performance of the QPLEXTM Alz
plus assay, a novel multiplex kit for screening cerebral amyloid deposi-
tion. Alzheimers Res Ther. 2020;13(1):12. d0i:10.21203/rs.3.rs-37991/
v2.Research Square.

The AHEAD 3-45 study: Design of a prevention trial for Alzheimer’s
disease—Rafii - 2023 - Alzheimer’s & Dementia—Wiley Online Library.
(n.d.). Retrieved June 13, 2025, from https://alz-journals.onlinelibrary.
wiley.com/doi/full/10.1002/alz.12748

64.

65.

66.

67.

68.

69.

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

Wang Z, Chen Y, Gong K, et al. Cerebrospinal fluid proteomics iden-
tification of biomarkers for amyloid and tau PET stages. Cell Rep Med.
2025;6(4):102031. doi:10.1016/j.xcrm.2025.102031

Shokrpour S, MoghadamFarid A, Bazzaz Abkenar S, Haghi Kashani M,
Akbari M, Sarvizadeh M. Machine learning for Parkinson’s disease:
A comprehensive review of datasets, algorithms, and challenges. Npj
Parkinson’s Dis. 2025;11(1):187. doi:10.1038/s41531-025-01025-9
Caron NS, Haqqani AS, Sandhu A, et al. Cerebrospinal fluid biomark-
ersfor assessing Huntington disease onset and severity. Brain Commun.
2022;4(6):fcac309. doi:10.1093/braincomms/fcac309

Yates LA, Aandahl Z, Richards SA, Brook BW. Cross validation for
model selection: A review with examples from ecology. Ecol Monogr.
2023;93(1):€1557.d0i:10.1002/ecm.1557

DeGroat W, Mendhe D, Bhusari A, Abdelhalim H, Zeeshan S, Ahmed
Z. IntelliGenes: A novel machine learning pipeline for biomarker
discovery and predictive analysis using multi-genomic profiles. Bioin-
formatics. 2023;39(12):btad755. doi: 10.1093/bioinformatics/btad755
lleri K. Comparative analysis of CatBoost, Light GBM, XGBoost, RF, and
DT methods optimised with PSO to estimate the number of k-barriers
for intrusion detection in wireless sensor networks. Int J Mach Learn
Cybern. 2025;16:6937-6956.d0i:10.1007/s13042-025-02654-5

. Freijeiro-Gonzalez L, Febrero-Bande M, Gonzalez-Manteiga W. A crit-

ical review of LASSO and Its derivatives for variable selection under
dependence among covariates. Int Stat Rev. 2022;90(1):118-145.
doi:10.1111/insr.12469

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Zheng W, Jiang Y, Wong HY, et al.
Targeted blood proteome profiling using NULISAseq identifies
a high-performance biomarker panel for Ag pathology
quantification and staging. Alzheimer’s Dement.
2026;22:71179. https://doi.org/10.1002/alz.71179

85UB01 7 SUOWILLIOD AIIERID B|cedl [dde 8y} Aq peue0b 812 Sao1Me YO 8SN JO S9INJ I0j AT aUIIUQ AB]IM UO (SUOTHPUOD-PUR-SWLBIAL0D" A 1M Ale.d 1 jBul Uo//Sciy) SUONIPUOD pue SWLB | 84} 885 *[9202/20/20] Uo Akeiqiauliuo A8|im *JO Aisieniun Buoyl BuoH Aq 6.TTZ Z[e/200T 0T/10p/L0d Ao | AReiqpuljuo S uINo -z [e//sdiy WOl pepeojumoq ‘Z ‘9202 ‘6.25255T


https://doi.org/10.1038/s43587-025-00872-8
https://doi.org/10.1038/s43587-025-00872-8
https://www.fda.gov/news-events/press-announcements/fda-clears-first-blood-test-used-diagnosing-alzheimers-disease
https://www.fda.gov/news-events/press-announcements/fda-clears-first-blood-test-used-diagnosing-alzheimers-disease
https://www.fda.gov/news-events/press-announcements/fda-clears-first-blood-test-used-diagnosing-alzheimers-disease
https://doi.org/10.1186/s13195-023-01302-w
https://doi.org/10.1002/alz.14397
https://doi.org/10.1002/alz.14397
https://doi.org/10.1016/j.ebiom.2024.105405
https://doi.org/10.1016/j.ebiom.2024.105405
https://doi.org/10.1093/brain/awaf167
https://doi.org/10.1093/brain/awaf167
https://doi.org/10.1007/s11033-023-08959-4
https://doi.org/10.1093/brain/awae034
https://doi.org/10.1016/j.biochi.2024.04.001
https://doi.org/10.21203/rs.3.rs-37991/v2
https://doi.org/10.21203/rs.3.rs-37991/v2
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12748
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12748
http://10.1016/j.xcrm.2025.102031
http://10.1038/s41531-025-01025-9
http://10.1093/braincomms/fcac309
http://10.1002/ecm.1557
http://10.1093/bioinformatics/btad755
http://10.1007/s13042-025-02654-5
http://10.1111/insr.12469
https://doi.org/10.1002/alz.71179

	Targeted blood proteome profiling using NULISAseq identifies a high-performance biomarker panel for Ab pathology quantification and staging
	Abstract
	Highlights
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Participant recruitment
	2.2 | Imaging acquisition and quantification
	2.3 | Plasma protein measurement
	2.4 | Discriminative performance evaluation
	2.5 | Associations between proteomics and Ab PET status
	2.6 | Associations between proteomics and Ab PET CL value
	2.7 | Comparison of Ab-associated proteins between patients’ blood and brains
	2.8 | Correlation network analysis
	2.9 | Predictive modeling analysis
	2.10 | Statistical analysis and data visualization

	3 | RESULTS
	3.1 | Associations of plasma ATN biomarkers with Ab pathology in the Hong Kong Chinese population
	3.2 | Identification of plasma proteomic signatures at early and established stages of Ab accumulation
	3.3 | Linear and non-linear proteomic dynamics along Ab accumulation
	3.4 | Prediction of continuous Ab accumulation using an eight-protein biomarker panel developed by machine learning
	3.5 | Classification of early Ab pathology by the eight-protein CL predictor

	4 | DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


